亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on the Classification of Benign and Malignant Parotid Tumors Based on Transfer Learning and a Convolutional Neural Network

卷积神经网络 学习迁移 腮腺 深度学习 计算机科学 人工智能 模式识别(心理学) 放射科 上下文图像分类 医学影像学 医学 病理 图像(数学)
作者
Hongbin Zhang,Lai Hui-cheng,Yan Wang,Xiaoyi Lv,Yue Hong,Jianming Peng,Ziwei Zhang,Chen Chen,Cheng Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 40360-40371 被引量:20
标识
DOI:10.1109/access.2021.3064752
摘要

The classification of benign and malignant parotid tumors is very crucial for the selection of surgical methods and their prognoses. The wide application of deep learning technology in the field of medical imaging also provides new ideas for the computer-aided diagnosis of parotid gland tumors. In addition, because the pathological types of parotid gland tumors are very complicated and the computed tomography (CT) images of benign and malignant patients are also very similar, some clinicians may misjudge tumors due to a lack of experience, which affects the effect of surgical treatment and prognosis. Therefore, this research proposes using deep learning methods to solve this problem. This study uses the four classic pretraining models of VGG16, InceptionV3, ResNet and DenseNet to classify parotid CT images using transfer learning methods and uses an improved convolutional neural network (CNN) model to classify parotid CT images. The experimental results show that the improved CNN model achieves an accuracy of 97.78%, and its classification performance is better than those of the other four transfer learning methods. It can effectively diagnose benign and malignant parotid tumors and improve the diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
8秒前
8秒前
李爱国应助春和景明采纳,获得10
10秒前
Fletcherschwann完成签到,获得积分10
16秒前
17秒前
22秒前
23秒前
26秒前
28秒前
tan发布了新的文献求助10
28秒前
30秒前
清脆元冬发布了新的文献求助10
31秒前
FashionBoy应助闫恒采纳,获得10
31秒前
明理夏波完成签到,获得积分10
33秒前
38秒前
41秒前
明理夏波发布了新的文献求助10
43秒前
47秒前
风趣雅青发布了新的文献求助30
49秒前
酷波er应助科研通管家采纳,获得30
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
Jasper应助香菜芋头采纳,获得10
52秒前
LuoLuo完成签到,获得积分10
56秒前
张匀继完成签到,获得积分10
57秒前
1分钟前
丘比特应助西内!卡Q因采纳,获得10
1分钟前
1分钟前
1分钟前
清脆元冬完成签到,获得积分20
1分钟前
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助Zola采纳,获得10
1分钟前
hankongli完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
伊萨卡发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194849
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447015
邀请新用户注册赠送积分活动 1438318
关于科研通互助平台的介绍 1415157