已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on the Classification of Benign and Malignant Parotid Tumors Based on Transfer Learning and a Convolutional Neural Network

卷积神经网络 学习迁移 腮腺 深度学习 计算机科学 人工智能 模式识别(心理学) 放射科 上下文图像分类 医学影像学 医学 病理 图像(数学)
作者
Hongbin Zhang,Lai Hui-cheng,Yan Wang,Xiaoyi Lv,Yue Hong,Jianming Peng,Ziwei Zhang,Chen Chen,Cheng Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 40360-40371 被引量:20
标识
DOI:10.1109/access.2021.3064752
摘要

The classification of benign and malignant parotid tumors is very crucial for the selection of surgical methods and their prognoses. The wide application of deep learning technology in the field of medical imaging also provides new ideas for the computer-aided diagnosis of parotid gland tumors. In addition, because the pathological types of parotid gland tumors are very complicated and the computed tomography (CT) images of benign and malignant patients are also very similar, some clinicians may misjudge tumors due to a lack of experience, which affects the effect of surgical treatment and prognosis. Therefore, this research proposes using deep learning methods to solve this problem. This study uses the four classic pretraining models of VGG16, InceptionV3, ResNet and DenseNet to classify parotid CT images using transfer learning methods and uses an improved convolutional neural network (CNN) model to classify parotid CT images. The experimental results show that the improved CNN model achieves an accuracy of 97.78%, and its classification performance is better than those of the other four transfer learning methods. It can effectively diagnose benign and malignant parotid tumors and improve the diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助柳德焕采纳,获得10
1秒前
liao应助de采纳,获得10
2秒前
3秒前
快乐乐松发布了新的文献求助10
3秒前
5秒前
5秒前
852应助jeremypan采纳,获得30
7秒前
8秒前
Echo完成签到,获得积分10
9秒前
10秒前
精明向梦完成签到,获得积分10
10秒前
Yan完成签到,获得积分10
11秒前
12秒前
SciGPT应助Helio采纳,获得10
14秒前
老实德地关注了科研通微信公众号
14秒前
Ning完成签到,获得积分10
16秒前
万能图书馆应助幽默笑白采纳,获得10
17秒前
DOZ发布了新的文献求助10
19秒前
19秒前
假茂茂发布了新的文献求助10
20秒前
21秒前
浮游应助菜菜就爱玩采纳,获得10
22秒前
Jackey完成签到,获得积分10
23秒前
DOZ完成签到,获得积分10
24秒前
张海铭完成签到,获得积分10
26秒前
电气工程及其自动化学院完成签到,获得积分10
27秒前
xiao完成签到,获得积分20
27秒前
欣慰立轩发布了新的文献求助10
28秒前
科研狗发布了新的文献求助10
29秒前
瀚海的雄狮完成签到,获得积分10
30秒前
33秒前
34秒前
桐桐应助老实德地采纳,获得10
36秒前
迅速的丑完成签到,获得积分10
37秒前
TX完成签到,获得积分10
38秒前
科研通AI6应助shareef采纳,获得10
38秒前
38秒前
xueshu666发布了新的文献求助10
40秒前
xiao关注了科研通微信公众号
41秒前
光亮的雅柏应助thirteen采纳,获得20
42秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263727
捐赠科研通 4480534
什么是DOI,文献DOI怎么找? 2454469
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1421016