Incremental Bayesian matrix/tensor learning for structural monitoring data imputation and response forecasting

计算机科学 贝叶斯概率 插补(统计学) 矩阵分解 数据挖掘 概率逻辑 人工智能 缺少数据 机器学习 动态贝叶斯网络 时间序列 模式识别(心理学) 量子力学 物理 特征向量
作者
Pu Ren,Xinyu Chen,Lijun Sun,Hao Sun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:158: 107734-107734 被引量:27
标识
DOI:10.1016/j.ymssp.2021.107734
摘要

There has been increased interest in missing sensor data imputation, which is ubiquitous in the field of structural health monitoring (SHM) due to discontinuous sensing caused by sensor malfunction. Recent development in Bayesian temporal factorization models for high-dimensional time series analysis has provided an effective tool to solve both imputation and prediction problems. However, for large datasets, the default Bayesian temporal factorization model becomes inefficient since the model has to be fully retrained when new data arrives. A potential solution is to train the model using a short time window covering only most recent data; however, by doing so, we may miss some critical dynamics and long-term dependencies which can only be identified from a longer time window. To address this fundamental issue in temporal factorization models, this paper presents an incremental Bayesian matrix/tensor learning scheme to achieve efficient imputation and prediction of structural response in long-term SHM. In particular, a spatiotemporal tensor is first constructed followed by Bayesian tensor factorization that extracts latent features for missing data imputation. To enable structural response forecasting based on long-term and incomplete sensing data, we develop an incremental learning scheme to effectively update the Bayesian temporal factorization model. The performance of the proposed approach is validated on continuous field-sensing data (including strain and temperature records) of a concrete bridge, based on the assumption that strain time histories are highly correlated to temperature recordings. The results indicate that the proposed probabilistic tensor learning framework is accurate and robust even in the presence of large rates of random missing, structured missing and their combination. The effect of rank selection on the imputation and prediction performance is also investigated. The results show that a better estimation accuracy can be achieved with a higher rank for random missing whereas a lower rank for structured missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QYR完成签到,获得积分10
刚刚
宁少爷完成签到,获得积分0
刚刚
盒子先生完成签到,获得积分10
1秒前
Skywalker完成签到,获得积分10
1秒前
coco完成签到,获得积分10
1秒前
CodeCraft应助动人的科研采纳,获得10
2秒前
巴拉巴拉完成签到 ,获得积分10
2秒前
4秒前
juwish完成签到,获得积分10
7秒前
自然沁完成签到,获得积分10
7秒前
闲来逛逛007完成签到 ,获得积分10
7秒前
bjcyqz完成签到,获得积分10
8秒前
kaka1981sdu完成签到,获得积分10
9秒前
9秒前
zycorner完成签到,获得积分10
9秒前
开朗娩完成签到 ,获得积分10
10秒前
10秒前
爱静静应助tylerconan采纳,获得30
10秒前
11秒前
伊蕾娜完成签到 ,获得积分10
12秒前
xukaixuan001完成签到,获得积分10
12秒前
魔幻安南完成签到 ,获得积分10
12秒前
圣人海完成签到,获得积分10
13秒前
音乐起完成签到,获得积分10
13秒前
小蘑菇应助克莱采纳,获得10
14秒前
佐佐木淳平完成签到,获得积分10
14秒前
海人完成签到 ,获得积分10
15秒前
田様应助何晓俊采纳,获得10
16秒前
16秒前
LO发布了新的文献求助30
18秒前
今天也要开心Y完成签到,获得积分10
19秒前
21秒前
21秒前
21秒前
21秒前
Tiliar完成签到,获得积分10
21秒前
优秀的牛青完成签到,获得积分10
21秒前
xy小侠女完成签到,获得积分10
22秒前
不加糖的刘先森完成签到,获得积分10
22秒前
24秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180066
求助须知:如何正确求助?哪些是违规求助? 2830409
关于积分的说明 7977031
捐赠科研通 2491999
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954