Incremental Bayesian matrix/tensor learning for structural monitoring data imputation and response forecasting

计算机科学 贝叶斯概率 插补(统计学) 矩阵分解 数据挖掘 概率逻辑 人工智能 缺少数据 机器学习 动态贝叶斯网络 时间序列 模式识别(心理学) 量子力学 物理 特征向量
作者
Pu Ren,Xinyu Chen,Lijun Sun,Hao Sun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:158: 107734-107734 被引量:27
标识
DOI:10.1016/j.ymssp.2021.107734
摘要

There has been increased interest in missing sensor data imputation, which is ubiquitous in the field of structural health monitoring (SHM) due to discontinuous sensing caused by sensor malfunction. Recent development in Bayesian temporal factorization models for high-dimensional time series analysis has provided an effective tool to solve both imputation and prediction problems. However, for large datasets, the default Bayesian temporal factorization model becomes inefficient since the model has to be fully retrained when new data arrives. A potential solution is to train the model using a short time window covering only most recent data; however, by doing so, we may miss some critical dynamics and long-term dependencies which can only be identified from a longer time window. To address this fundamental issue in temporal factorization models, this paper presents an incremental Bayesian matrix/tensor learning scheme to achieve efficient imputation and prediction of structural response in long-term SHM. In particular, a spatiotemporal tensor is first constructed followed by Bayesian tensor factorization that extracts latent features for missing data imputation. To enable structural response forecasting based on long-term and incomplete sensing data, we develop an incremental learning scheme to effectively update the Bayesian temporal factorization model. The performance of the proposed approach is validated on continuous field-sensing data (including strain and temperature records) of a concrete bridge, based on the assumption that strain time histories are highly correlated to temperature recordings. The results indicate that the proposed probabilistic tensor learning framework is accurate and robust even in the presence of large rates of random missing, structured missing and their combination. The effect of rank selection on the imputation and prediction performance is also investigated. The results show that a better estimation accuracy can be achieved with a higher rank for random missing whereas a lower rank for structured missing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助June采纳,获得10
1秒前
1秒前
可爱的函函应助123采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
话藏心完成签到,获得积分10
3秒前
4秒前
莫飞完成签到,获得积分10
6秒前
芒果爸爸发布了新的文献求助10
6秒前
8秒前
jiajia发布了新的文献求助10
8秒前
woleaisa发布了新的文献求助10
8秒前
9秒前
ZDW777完成签到 ,获得积分10
9秒前
mira完成签到,获得积分10
10秒前
10秒前
张秉环完成签到 ,获得积分10
11秒前
英俊的铭应助zhu采纳,获得10
12秒前
高兴给浮光的求助进行了留言
13秒前
angelinazh发布了新的文献求助10
15秒前
Flori完成签到 ,获得积分10
15秒前
科研通AI6应助繁荣的念双采纳,获得10
17秒前
scgmwwx完成签到 ,获得积分0
19秒前
今后应助June采纳,获得10
19秒前
19秒前
11发布了新的文献求助10
19秒前
21秒前
21秒前
天才包发布了新的文献求助10
22秒前
芝麻球ii完成签到,获得积分10
23秒前
orixero应助茶米采纳,获得10
23秒前
23秒前
李杰发布了新的文献求助10
23秒前
angelinazh完成签到,获得积分10
24秒前
24秒前
雨田完成签到,获得积分10
24秒前
丘比特应助上邪采纳,获得10
25秒前
芒果爸爸完成签到,获得积分10
25秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073