Incremental Bayesian matrix/tensor learning for structural monitoring data imputation and response forecasting

计算机科学 贝叶斯概率 插补(统计学) 矩阵分解 数据挖掘 概率逻辑 人工智能 缺少数据 机器学习 动态贝叶斯网络 时间序列 模式识别(心理学) 量子力学 物理 特征向量
作者
Pu Ren,Xinyu Chen,Lijun Sun,Hao Sun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:158: 107734-107734 被引量:27
标识
DOI:10.1016/j.ymssp.2021.107734
摘要

There has been increased interest in missing sensor data imputation, which is ubiquitous in the field of structural health monitoring (SHM) due to discontinuous sensing caused by sensor malfunction. Recent development in Bayesian temporal factorization models for high-dimensional time series analysis has provided an effective tool to solve both imputation and prediction problems. However, for large datasets, the default Bayesian temporal factorization model becomes inefficient since the model has to be fully retrained when new data arrives. A potential solution is to train the model using a short time window covering only most recent data; however, by doing so, we may miss some critical dynamics and long-term dependencies which can only be identified from a longer time window. To address this fundamental issue in temporal factorization models, this paper presents an incremental Bayesian matrix/tensor learning scheme to achieve efficient imputation and prediction of structural response in long-term SHM. In particular, a spatiotemporal tensor is first constructed followed by Bayesian tensor factorization that extracts latent features for missing data imputation. To enable structural response forecasting based on long-term and incomplete sensing data, we develop an incremental learning scheme to effectively update the Bayesian temporal factorization model. The performance of the proposed approach is validated on continuous field-sensing data (including strain and temperature records) of a concrete bridge, based on the assumption that strain time histories are highly correlated to temperature recordings. The results indicate that the proposed probabilistic tensor learning framework is accurate and robust even in the presence of large rates of random missing, structured missing and their combination. The effect of rank selection on the imputation and prediction performance is also investigated. The results show that a better estimation accuracy can be achieved with a higher rank for random missing whereas a lower rank for structured missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fang完成签到,获得积分10
1秒前
Ann完成签到,获得积分10
1秒前
balabalabala发布了新的文献求助10
1秒前
1秒前
吉宝发布了新的文献求助10
1秒前
晨曦完成签到 ,获得积分10
2秒前
SKF完成签到 ,获得积分10
2秒前
古德曼完成签到,获得积分10
2秒前
幸福胡萝卜完成签到,获得积分10
2秒前
zimi完成签到,获得积分10
2秒前
3秒前
3秒前
LIN完成签到,获得积分10
4秒前
周周完成签到,获得积分20
4秒前
zwy发布了新的文献求助10
5秒前
廉不可发布了新的文献求助10
5秒前
9℃发布了新的文献求助10
5秒前
Hello应助阿辉采纳,获得10
5秒前
若兰发布了新的文献求助10
5秒前
小h发布了新的文献求助10
5秒前
细心天德发布了新的文献求助10
6秒前
6秒前
weiyu完成签到,获得积分10
7秒前
星星完成签到 ,获得积分10
7秒前
愉快西牛完成签到 ,获得积分10
7秒前
xkh发布了新的文献求助10
7秒前
小七完成签到,获得积分20
7秒前
FashionBoy应助虚幻的玉米采纳,获得10
8秒前
8秒前
蕉太狼完成签到,获得积分10
9秒前
yanmu2010发布了新的文献求助10
9秒前
9秒前
10秒前
国服柳如烟完成签到 ,获得积分10
10秒前
minino完成签到 ,获得积分10
11秒前
11秒前
11秒前
wangfeng007完成签到,获得积分10
11秒前
namk完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016449
求助须知:如何正确求助?哪些是违规求助? 3556606
关于积分的说明 11321734
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812434
邀请新用户注册赠送积分活动 887994
科研通“疑难数据库(出版商)”最低求助积分说明 812060