清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Incremental Bayesian matrix/tensor learning for structural monitoring data imputation and response forecasting

计算机科学 贝叶斯概率 插补(统计学) 矩阵分解 数据挖掘 概率逻辑 人工智能 缺少数据 机器学习 动态贝叶斯网络 时间序列 模式识别(心理学) 特征向量 物理 量子力学
作者
Pu Ren,Xinyu Chen,Lijun Sun,Hao Sun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:158: 107734-107734 被引量:27
标识
DOI:10.1016/j.ymssp.2021.107734
摘要

There has been increased interest in missing sensor data imputation, which is ubiquitous in the field of structural health monitoring (SHM) due to discontinuous sensing caused by sensor malfunction. Recent development in Bayesian temporal factorization models for high-dimensional time series analysis has provided an effective tool to solve both imputation and prediction problems. However, for large datasets, the default Bayesian temporal factorization model becomes inefficient since the model has to be fully retrained when new data arrives. A potential solution is to train the model using a short time window covering only most recent data; however, by doing so, we may miss some critical dynamics and long-term dependencies which can only be identified from a longer time window. To address this fundamental issue in temporal factorization models, this paper presents an incremental Bayesian matrix/tensor learning scheme to achieve efficient imputation and prediction of structural response in long-term SHM. In particular, a spatiotemporal tensor is first constructed followed by Bayesian tensor factorization that extracts latent features for missing data imputation. To enable structural response forecasting based on long-term and incomplete sensing data, we develop an incremental learning scheme to effectively update the Bayesian temporal factorization model. The performance of the proposed approach is validated on continuous field-sensing data (including strain and temperature records) of a concrete bridge, based on the assumption that strain time histories are highly correlated to temperature recordings. The results indicate that the proposed probabilistic tensor learning framework is accurate and robust even in the presence of large rates of random missing, structured missing and their combination. The effect of rank selection on the imputation and prediction performance is also investigated. The results show that a better estimation accuracy can be achieved with a higher rank for random missing whereas a lower rank for structured missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yindi1991完成签到 ,获得积分10
20秒前
单小芫完成签到 ,获得积分10
24秒前
张兴博完成签到 ,获得积分10
27秒前
猪猪完成签到 ,获得积分10
31秒前
攀攀完成签到 ,获得积分10
43秒前
浮游应助冷傲凝琴采纳,获得10
46秒前
1yyyyyy发布了新的文献求助10
53秒前
1分钟前
炙热的雨双完成签到 ,获得积分10
1分钟前
老高完成签到 ,获得积分10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
1分钟前
zhouyms完成签到,获得积分10
1分钟前
theo完成签到 ,获得积分10
1分钟前
蟪蛄鸪发布了新的文献求助10
1分钟前
Clifton完成签到 ,获得积分10
1分钟前
早睡早起身体好Q完成签到 ,获得积分10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
烟花应助蟪蛄鸪采纳,获得10
1分钟前
千帆破浪完成签到 ,获得积分10
2分钟前
naczx完成签到,获得积分0
2分钟前
Diane完成签到,获得积分10
2分钟前
yunxiao完成签到 ,获得积分10
2分钟前
桥西小河完成签到 ,获得积分10
2分钟前
2分钟前
华理附院孙文博完成签到 ,获得积分10
2分钟前
青青草完成签到,获得积分10
2分钟前
迅速的幻雪完成签到 ,获得积分10
2分钟前
houxy完成签到 ,获得积分10
2分钟前
2分钟前
Qyyy完成签到,获得积分20
2分钟前
科研通AI2S应助Qyyy采纳,获得10
2分钟前
2分钟前
慕青应助刘旦生采纳,获得10
3分钟前
3分钟前
3分钟前
C_发布了新的文献求助10
3分钟前
刘旦生发布了新的文献求助10
3分钟前
猪猪hero应助Qyyy采纳,获得10
3分钟前
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347302
求助须知:如何正确求助?哪些是违规求助? 4481596
关于积分的说明 13947880
捐赠科研通 4379812
什么是DOI,文献DOI怎么找? 2406577
邀请新用户注册赠送积分活动 1399174
关于科研通互助平台的介绍 1372199