CFM: A Consistency Filtering Mechanism for Road Damage Detection

计算机科学 一致性(知识库) 人工智能 分割 目标检测 跳跃式监视 注释 对象(语法) 模式识别(心理学) 机器学习
作者
Zixiang Pei,Rongheng Lin,Xiubao Zhang,Haifeng Shen,Jian Tang,Yi Yang
标识
DOI:10.1109/bigdata50022.2020.9377911
摘要

This article presents the solution that we use in the Global Road Damage Detection Challenge 2020, which is designed to recognize the road damages present in an image captured from three countries: India, Japan, and Czech. In this challenge, Cascade R-CNN is selected as a baseline model to detect objects in images. It is commonly known that making a precise annotation in a large dataset is crucial to the performance of object detection and placing bounding boxes for every object in each image is time-consuming and costs a lot. To make full use of available unlabeled data, the consistency filtering mechanism (CFM) with self-supervised methods is proposed to utilize high-confident samples with pseudo-labels for training. And we also apply a series of data augmentation techniques (road segmentation, flip, mixup, CLAHE) to labeled data in training phase. Moreover, we ensemble models with different tricks by weighted boxes fusion to produce the final prediction. Finally, our proposed method can achieve a great mean f1-score of 0.6290 on the test1 dataset and 0.6219 on the test2 dataset respectively, which wins the Bronze Prize (ranks 3rd place). Code and trained models are available at the following link: https://pan.baidu.com/s/1VjLuNBVJGS34mMMpDkDRGQ, password: xzc6.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助司空天磊采纳,获得10
刚刚
鸡腿子完成签到,获得积分10
刚刚
刚刚
1秒前
隐形曼青应助myjf采纳,获得10
2秒前
2秒前
xf完成签到,获得积分20
3秒前
天天快乐应助vvv采纳,获得10
3秒前
彭于彦祖应助liujun采纳,获得30
4秒前
Victoria发布了新的文献求助10
4秒前
Gzl发布了新的文献求助10
5秒前
乐乐应助123采纳,获得10
5秒前
暮然发布了新的文献求助10
6秒前
感冒了发布了新的文献求助10
6秒前
6秒前
pangdahai完成签到,获得积分10
7秒前
明天开始戒绿茶完成签到,获得积分10
7秒前
jessieinfrance完成签到,获得积分10
7秒前
7秒前
8秒前
eden完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
汉堡包应助微弱de胖头采纳,获得10
10秒前
10秒前
11秒前
firy完成签到,获得积分10
11秒前
12秒前
王子语发布了新的文献求助10
13秒前
邓佳鑫Alan应助2000dw采纳,获得10
13秒前
明亮不乐发布了新的文献求助10
13秒前
13秒前
13秒前
丘比特应助Yang采纳,获得30
14秒前
研友_VZG7GZ应助eden采纳,获得10
14秒前
张雯思发布了新的文献求助10
14秒前
张雯思发布了新的文献求助10
14秒前
myjf发布了新的文献求助10
14秒前
聪明无颜发布了新的文献求助30
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344