Remote Sensing Object Detection Based on Receptive Field Expansion Block

计算机科学 目标检测 人工智能 特征(语言学) 块(置换群论) 棱锥(几何) 骨干网 计算机视觉 增采样 水准点(测量) 背景(考古学) 特征提取 卷积神经网络 卷积(计算机科学) 模式识别(心理学) 领域(数学) 遥感 人工神经网络 图像(数学) 电信 地理 光学 物理 哲学 考古 纯数学 语言学 数学 大地测量学 几何学
作者
Xiaohu Dong,Ruigang Fu,Yinghui Gao,Yao Qin,Yuanxin Ye,Biao Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:20
标识
DOI:10.1109/lgrs.2021.3110584
摘要

Due to the rapid development of deep learning techniques and the collection of large-scale remote sensing datasets, convolutional neural networks (CNNs) have made significant progress in remote sensing object detection. However, due to the diversity of objects in remote sensing images, multiscale object detection is still a challenging task. In this letter, a novel object detection framework based on feature pyramid network (FPN) is proposed to improve the detection performance of multiscale objects. First, a receptive field expansion block (RFEB) is designed and added on the top of the backbone to expand the receptive field of FPN adaptively. In this way, the context information around each object is well captured. Then, the features obtained via RFEB are delivered to feature maps at all pyramid levels, remedying the drawback of FPN that semantic information captured by deep layers is gradually diluted when transmitted to lower layers. Third, since the classic backbone of FPN, which produces large receptive fields based on large downsampling factors, may limit the effectiveness of RFEB, the backbone of the original FPN is modified using dilated convolution to ease the resolution drop of feature maps while maintaining a large receptive field. As a feature extractor, the proposed framework can be easily deployed in other FPN-based methods. The experiments on the benchmark for object DetectIon in Optical Remote sensing images (DIOR) dataset demonstrate the proposed method’s superiority over considered state-of-the-art baseline methods in terms of detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
落羽完成签到,获得积分10
1秒前
1秒前
1秒前
情怀应助摘星的小孩采纳,获得20
2秒前
王刚发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
4秒前
科研通AI2S应助浮浮采纳,获得10
5秒前
柔弱以旋发布了新的文献求助10
5秒前
5秒前
Mobitz发布了新的文献求助20
6秒前
sj发布了新的文献求助10
6秒前
hzw发布了新的文献求助10
6秒前
两院候选人完成签到,获得积分10
7秒前
7秒前
所所应助xzz采纳,获得10
7秒前
黑钻发布了新的文献求助10
7秒前
8秒前
ao20000106完成签到,获得积分10
8秒前
8秒前
喵喵酱发布了新的文献求助10
8秒前
8秒前
8秒前
斯文败类应助health__up采纳,获得10
9秒前
活力尔竹发布了新的文献求助10
9秒前
科研通AI2S应助gemini0615采纳,获得10
9秒前
Qian完成签到,获得积分10
10秒前
liyanglin完成签到 ,获得积分10
10秒前
哦豁完成签到,获得积分20
11秒前
MMM完成签到 ,获得积分10
11秒前
11秒前
大力小玉完成签到,获得积分10
11秒前
于是真的完成签到,获得积分10
11秒前
老实如松完成签到,获得积分10
12秒前
ao20000106发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226832
求助须知:如何正确求助?哪些是违规求助? 2875060
关于积分的说明 8189063
捐赠科研通 2542120
什么是DOI,文献DOI怎么找? 1372548
科研通“疑难数据库(出版商)”最低求助积分说明 646537
邀请新用户注册赠送积分活动 620887