Remote Sensing Object Detection Based on Receptive Field Expansion Block

计算机科学 目标检测 人工智能 特征(语言学) 块(置换群论) 棱锥(几何) 骨干网 计算机视觉 增采样 水准点(测量) 背景(考古学) 特征提取 卷积神经网络 卷积(计算机科学) 模式识别(心理学) 领域(数学) 遥感 人工神经网络 图像(数学) 电信 地理 光学 物理 哲学 考古 纯数学 语言学 数学 大地测量学 几何学
作者
Xiaohu Dong,Ruigang Fu,Yinghui Gao,Yao Qin,Yuanxin Ye,Biao Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:20
标识
DOI:10.1109/lgrs.2021.3110584
摘要

Due to the rapid development of deep learning techniques and the collection of large-scale remote sensing datasets, convolutional neural networks (CNNs) have made significant progress in remote sensing object detection. However, due to the diversity of objects in remote sensing images, multiscale object detection is still a challenging task. In this letter, a novel object detection framework based on feature pyramid network (FPN) is proposed to improve the detection performance of multiscale objects. First, a receptive field expansion block (RFEB) is designed and added on the top of the backbone to expand the receptive field of FPN adaptively. In this way, the context information around each object is well captured. Then, the features obtained via RFEB are delivered to feature maps at all pyramid levels, remedying the drawback of FPN that semantic information captured by deep layers is gradually diluted when transmitted to lower layers. Third, since the classic backbone of FPN, which produces large receptive fields based on large downsampling factors, may limit the effectiveness of RFEB, the backbone of the original FPN is modified using dilated convolution to ease the resolution drop of feature maps while maintaining a large receptive field. As a feature extractor, the proposed framework can be easily deployed in other FPN-based methods. The experiments on the benchmark for object DetectIon in Optical Remote sensing images (DIOR) dataset demonstrate the proposed method’s superiority over considered state-of-the-art baseline methods in terms of detection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助NanXin采纳,获得10
刚刚
刚刚
刚刚
1秒前
JamesYang发布了新的文献求助10
1秒前
JamesYang发布了新的文献求助10
1秒前
1秒前
1秒前
就好完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
仙仙仙仙啊完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
ww发布了新的文献求助10
3秒前
荞面小肉包完成签到,获得积分10
3秒前
Lemon完成签到,获得积分10
3秒前
天份发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
缥缈老九完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
CC完成签到 ,获得积分10
4秒前
芋头发布了新的文献求助10
4秒前
5秒前
Macrophage发布了新的文献求助10
5秒前
5秒前
qijie完成签到,获得积分10
6秒前
6秒前
Hello应助康康采纳,获得10
6秒前
choo发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728463
求助须知:如何正确求助?哪些是违规求助? 5312850
关于积分的说明 15314159
捐赠科研通 4875631
什么是DOI,文献DOI怎么找? 2618899
邀请新用户注册赠送积分活动 1568458
关于科研通互助平台的介绍 1525134