Remote Sensing Object Detection Based on Receptive Field Expansion Block

计算机科学 目标检测 人工智能 特征(语言学) 块(置换群论) 棱锥(几何) 骨干网 计算机视觉 增采样 水准点(测量) 背景(考古学) 特征提取 卷积神经网络 卷积(计算机科学) 模式识别(心理学) 领域(数学) 遥感 人工神经网络 图像(数学) 电信 地理 光学 物理 哲学 考古 纯数学 语言学 数学 大地测量学 几何学
作者
Xiaohu Dong,Ruigang Fu,Yinghui Gao,Yao Qin,Yuanxin Ye,Biao Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:20
标识
DOI:10.1109/lgrs.2021.3110584
摘要

Due to the rapid development of deep learning techniques and the collection of large-scale remote sensing datasets, convolutional neural networks (CNNs) have made significant progress in remote sensing object detection. However, due to the diversity of objects in remote sensing images, multiscale object detection is still a challenging task. In this letter, a novel object detection framework based on feature pyramid network (FPN) is proposed to improve the detection performance of multiscale objects. First, a receptive field expansion block (RFEB) is designed and added on the top of the backbone to expand the receptive field of FPN adaptively. In this way, the context information around each object is well captured. Then, the features obtained via RFEB are delivered to feature maps at all pyramid levels, remedying the drawback of FPN that semantic information captured by deep layers is gradually diluted when transmitted to lower layers. Third, since the classic backbone of FPN, which produces large receptive fields based on large downsampling factors, may limit the effectiveness of RFEB, the backbone of the original FPN is modified using dilated convolution to ease the resolution drop of feature maps while maintaining a large receptive field. As a feature extractor, the proposed framework can be easily deployed in other FPN-based methods. The experiments on the benchmark for object DetectIon in Optical Remote sensing images (DIOR) dataset demonstrate the proposed method’s superiority over considered state-of-the-art baseline methods in terms of detection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王王完成签到 ,获得积分10
2秒前
哇咔咔完成签到 ,获得积分10
5秒前
哦萨尔完成签到,获得积分10
8秒前
orixero应助is采纳,获得10
14秒前
东方越彬发布了新的文献求助10
15秒前
16秒前
困困羊发布了新的文献求助10
19秒前
23秒前
ff完成签到 ,获得积分10
28秒前
28秒前
乐乐应助暖吱采纳,获得20
34秒前
受伤的平安完成签到,获得积分10
35秒前
ZeKaWa应助linlin采纳,获得10
37秒前
45秒前
49秒前
tianya完成签到,获得积分10
50秒前
51秒前
烟花应助标致的妙晴采纳,获得10
52秒前
浮游应助朴素的松采纳,获得10
54秒前
54秒前
55秒前
加百莉发布了新的文献求助10
56秒前
cancan发布了新的文献求助10
57秒前
伯言发布了新的文献求助10
1分钟前
元谷雪应助陈帅采纳,获得10
1分钟前
初雪完成签到,获得积分10
1分钟前
花花花花完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
肉肉完成签到 ,获得积分10
1分钟前
cancan完成签到,获得积分10
1分钟前
zhuangbaobao发布了新的文献求助10
1分钟前
郭6666发布了新的文献求助10
1分钟前
完美世界应助留胡子的火采纳,获得10
1分钟前
脑洞疼应助郭6666采纳,获得10
1分钟前
公冶愚志完成签到,获得积分10
1分钟前
威武的皮卡丘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大龙哥886应助ri_290采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555