Novel multi-scale dilated CNN-LSTM for fault diagnosis of planetary gearbox with unbalanced samples under noisy environment

计算机科学 稳健性(进化) 人工智能 断层(地质) 模式识别(心理学) 噪音(视频) 交叉熵 保险丝(电气) 试验数据 卷积神经网络 深度学习 图像(数学) 工程类 生物化学 化学 地震学 地质学 电气工程 基因 程序设计语言
作者
Song-Yu Han,Xiang Zhong,Haidong Shao,Tian’ao Xu,Rongding Zhao,Junsheng Cheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (12): 124002-124002 被引量:36
标识
DOI:10.1088/1361-6501/ac1b43
摘要

Lots of recent deep learning based intelligent fault diagnosis methods of planetary gearbox have achieved satisfactory accuracy with balanced training samples. Nevertheless, the fault samples are generally far less than healthy samples in practical engineering, and the collected data samples usually contain lots of noise, making it difficult to achieve accurate fault diagnosis. In order to solve these problems, this paper proposes a new method called novel multi-scale dilated convolutional neural network with long short-term memory (CNN-LSTM). Firstly, a novel multi-scale dilated CNN is constructed using new dilated strategy to enrich the coverage of the fields of view and avoid the loss of original information, which could adequately mine the distinguishing features of small samples. Secondly, an adaptive weight unit combined with LSTM is designed to fuse the distinguishing features and improve their robustness to noise. Finally, to pay more attention to the small samples and easily confused samples, a new-type loss function called enhanced cross entropy is developed. The test and analysis of the planetary gearbox data sets prove that the proposed method shows better diagnosis performance than other comparison methods using unbalanced training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助蓝山鸲采纳,获得10
1秒前
1秒前
清新的苑博完成签到,获得积分10
1秒前
1秒前
ddddd发布了新的文献求助10
1秒前
柒柒发布了新的文献求助10
1秒前
夕照古风发布了新的文献求助10
1秒前
1秒前
生5clean发布了新的文献求助10
2秒前
金雪发布了新的文献求助10
2秒前
tanny完成签到,获得积分10
2秒前
李健的小迷弟应助Keng采纳,获得30
3秒前
哭泣乌完成签到,获得积分10
4秒前
寰宇完成签到,获得积分10
4秒前
跟我说晚安完成签到,获得积分10
4秒前
于彤完成签到,获得积分10
4秒前
彭于晏应助weiyu_u采纳,获得10
5秒前
阔落发布了新的文献求助10
5秒前
ljz910005完成签到,获得积分10
5秒前
6秒前
6秒前
球球发布了新的文献求助10
6秒前
6秒前
兰兰发布了新的文献求助10
7秒前
7秒前
Ss发布了新的文献求助30
7秒前
赘婿应助果实采纳,获得10
7秒前
科研通AI2S应助派大珊采纳,获得10
8秒前
qsxy发布了新的文献求助10
9秒前
幸福大白发布了新的文献求助10
9秒前
9秒前
老板娘完成签到,获得积分10
10秒前
情怀应助Duxize采纳,获得10
10秒前
yifanchen发布了新的文献求助10
11秒前
七龙珠完成签到,获得积分10
11秒前
faye完成签到,获得积分10
12秒前
文艺点点完成签到,获得积分10
15秒前
搜集达人应助娇气的雁兰采纳,获得10
15秒前
澈哩发布了新的文献求助10
15秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128