Novel multi-scale dilated CNN-LSTM for fault diagnosis of planetary gearbox with unbalanced samples under noisy environment

计算机科学 稳健性(进化) 人工智能 断层(地质) 模式识别(心理学) 噪音(视频) 交叉熵 保险丝(电气) 试验数据 卷积神经网络 深度学习 图像(数学) 工程类 程序设计语言 化学 地震学 地质学 电气工程 基因 生物化学
作者
Song-Yu Han,Xiang Zhong,Haidong Shao,Tian’ao Xu,Rongding Zhao,Junsheng Cheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (12): 124002-124002 被引量:48
标识
DOI:10.1088/1361-6501/ac1b43
摘要

Lots of recent deep learning based intelligent fault diagnosis methods of planetary gearbox have achieved satisfactory accuracy with balanced training samples. Nevertheless, the fault samples are generally far less than healthy samples in practical engineering, and the collected data samples usually contain lots of noise, making it difficult to achieve accurate fault diagnosis. In order to solve these problems, this paper proposes a new method called novel multi-scale dilated convolutional neural network with long short-term memory (CNN-LSTM). Firstly, a novel multi-scale dilated CNN is constructed using new dilated strategy to enrich the coverage of the fields of view and avoid the loss of original information, which could adequately mine the distinguishing features of small samples. Secondly, an adaptive weight unit combined with LSTM is designed to fuse the distinguishing features and improve their robustness to noise. Finally, to pay more attention to the small samples and easily confused samples, a new-type loss function called enhanced cross entropy is developed. The test and analysis of the planetary gearbox data sets prove that the proposed method shows better diagnosis performance than other comparison methods using unbalanced training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金屋藏娇完成签到,获得积分10
刚刚
sq0507完成签到,获得积分10
刚刚
Jared应助5666采纳,获得10
1秒前
开整吧完成签到,获得积分10
1秒前
张展鹏发布了新的文献求助10
2秒前
上单马冬梅完成签到,获得积分10
2秒前
orixero应助施傲天采纳,获得10
2秒前
3秒前
十三发布了新的文献求助10
3秒前
Tizzy完成签到,获得积分10
3秒前
sq0507发布了新的文献求助10
3秒前
4秒前
星辰大海应助hunbaekkkkk采纳,获得10
4秒前
VDC应助yzy采纳,获得30
5秒前
无花果应助RANQIAO采纳,获得10
5秒前
慕青应助CFSJ采纳,获得10
5秒前
6秒前
cora发布了新的文献求助10
6秒前
包容夕阳完成签到,获得积分10
6秒前
赘婿应助务实的绮山采纳,获得10
7秒前
7秒前
苏一的小宝贝完成签到,获得积分10
7秒前
小新发布了新的文献求助10
7秒前
Z170完成签到,获得积分10
8秒前
JamesPei应助沙拉酱采纳,获得10
8秒前
Yu完成签到,获得积分10
8秒前
9秒前
大模型应助sq0507采纳,获得10
9秒前
科研通AI6应助默默的橘子采纳,获得10
9秒前
靴子完成签到,获得积分20
10秒前
10秒前
小小发布了新的文献求助10
10秒前
11秒前
FashionBoy应助terryok采纳,获得10
11秒前
Jaxine应助cora采纳,获得20
11秒前
Sea_U发布了新的文献求助10
11秒前
11秒前
12秒前
hui发布了新的文献求助30
12秒前
CipherSage应助Yu采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531157
求助须知:如何正确求助?哪些是违规求助? 4620066
关于积分的说明 14571278
捐赠科研通 4559548
什么是DOI,文献DOI怎么找? 2498481
邀请新用户注册赠送积分活动 1478473
关于科研通互助平台的介绍 1449946