亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Disentangling Ferroelectric Wall Dynamics and Identification of Pinning Mechanisms via Deep Learning

铁电性 材料科学 压电响应力显微镜 极化(电化学) 凝聚态物理 非线性系统 磁畴壁(磁性) 纳米技术 光电子学 磁场 物理 磁化 电介质 量子力学 物理化学 化学
作者
Yongtao Liu,Roger Proksch,Chun Yin Wong,Maxim Ziatdinov,Sergei V. Kalinin
出处
期刊:Advanced Materials [Wiley]
卷期号:33 (43) 被引量:26
标识
DOI:10.1002/adma.202103680
摘要

Field-induced domain-wall dynamics in ferroelectric materials underpins multiple applications ranging from actuators to information technology devices and necessitates a quantitative description of the associated mechanisms including giant electromechanical couplings, controlled nonlinearities, or low coercive voltages. While the advances in dynamic piezoresponse force microscopy measurements over the last two decades have rendered visualization of polarization dynamics relatively straightforward, the associated insights into the local mechanisms have been elusive. This work explores the domain dynamics in model polycrystalline materials using a workflow combining deep-learning-based segmentation of the domain structures with nonlinear dimensionality reduction using multilayer rotationally invariant autoencoders (rVAE). The former allows unambiguous identification and classification of the ferroelectric and ferroelastic domain walls. The rVAE discovers the latent representations of the domain wall geometries and their dynamics, thus providing insight into the intrinsic mechanisms of polarization switching, that can further be compared to simple physical models. The rVAE disentangles the factors affecting the pinning efficiency of ferroelectric walls, offering insights into the correlation of ferroelastic wall distribution and ferroelectric wall pinning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
秋日思语发布了新的文献求助10
17秒前
张燕完成签到,获得积分10
38秒前
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
秋日思语发布了新的文献求助10
1分钟前
英俊的铭应助热情高跟鞋采纳,获得10
2分钟前
这学真难读下去完成签到,获得积分10
2分钟前
2分钟前
2分钟前
AixLeft完成签到 ,获得积分10
2分钟前
热情高跟鞋完成签到,获得积分10
2分钟前
2分钟前
无花果发布了新的文献求助10
2分钟前
CodeCraft应助cube半肥半瘦采纳,获得10
3分钟前
4分钟前
观众发布了新的文献求助10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
Yolanda_Xu完成签到 ,获得积分10
4分钟前
星辰大海应助1762120采纳,获得10
4分钟前
orixero应助余馨怡采纳,获得10
4分钟前
5分钟前
田様应助小橘子吃傻子采纳,获得10
5分钟前
1762120发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
andrele发布了新的文献求助10
6分钟前
mengran完成签到,获得积分10
7分钟前
赫连山菡完成签到,获得积分10
8分钟前
8分钟前
sobereva完成签到,获得积分10
8分钟前
8分钟前
余馨怡发布了新的文献求助10
8分钟前
sobereva发布了新的文献求助10
9分钟前
芸栖完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210860
求助须知:如何正确求助?哪些是违规求助? 4387506
关于积分的说明 13662882
捐赠科研通 4247463
什么是DOI,文献DOI怎么找? 2330295
邀请新用户注册赠送积分活动 1328047
关于科研通互助平台的介绍 1280842