峰度
模式识别(心理学)
偏斜
小波
特征提取
人工智能
计算机科学
小波变换
支持向量机
脑-机接口
近似熵
标准差
语音识别
脑电图
信号(编程语言)
熵(时间箭头)
特征(语言学)
离散小波变换
数学
统计
物理
哲学
精神科
量子力学
语言学
程序设计语言
心理学
出处
期刊:WSEAS transactions on computers
[World Scientific and Engineering Academy and Society (WSEAS)]
日期:2021-09-17
卷期号:20: 199-206
被引量:4
标识
DOI:10.37394/23205.2021.20.21
摘要
This study focused on the classification of EEG signal. The study aims to make a classification with fast response and high-performance rate. Thus, it could be possible for real-time control applications as Brain-Computer Interface (BCI) systems. The feature vector is created by Wavelet transform and statistical calculations. It is trained and tested with a neural network. The db4 wavelet is used in the study. Pwelch, skewness, kurtosis, band power, median, standard deviation, min, max, energy, entropy are used to make the wavelet coefficients meaningful. The performance is achieved as 99.414% with the running time of 0.0209 seconds
科研通智能强力驱动
Strongly Powered by AbleSci AI