小RNA
N6-甲基腺苷
生物
基因沉默
脱甲基酶
基因
核糖核酸
细胞生物学
遗传学
甲基化
表观遗传学
甲基转移酶
作者
Hanming Wang,Xinyun Song,Chun Song,Sheng Wang,Huiqing Cao
标识
DOI:10.1016/j.abb.2021.109023
摘要
In eukaryotes, N6-methyladenosine (m6A) is one of the most abundant modifications on RNAs, and it plays important roles in many biological processes and diseases such as cancer. While most m6A researches focus on message RNAs and long non-coding RNAs, recent studies have reported the presence of m6A in small RNAs. Nevertheless, current knowledge about m6A prevalence in mature microRNAs (miRNA) is extremely limited and the functional significance of m6A methylation in miRNAs remains to be elucidated. Here, we demonstrated cell-specific m6A profiles of miRNAs in A549 human non-small cell lung cancer (NSCLC) cells and HEK293A cells by using miRNA m6A immunoprecipitation sequencing and constructed the consensus motif in m6A-enriched miRNAs de novo. We found that miR-21-5p, an oncogenic miRNA, showed the highest m6A enrichment in NSCLC cells. Depletion of the demethylase ALKBH5 did not change the expression level of miR-21-5p, but altered the m6A abundance of miR-21-5p, thereby changing the expression levels of its target gene. We further synthesized m6A modified miR-21-5p mimics in vitro and demonstrated that in NSCLC cells, m6A marks in mature miR-21-5p could directly affect its silencing potency towards target genes, which finally impaired its promotion to proliferation and motility. Together, our findings reveal the landscape of m6A modification in mature miRNAs, and provide the first evidence that it may contribute to the mRNA responses to cancer-related miRNAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI