材料科学
飞秒
激光器
激光烧蚀
表面粗糙度
烧蚀
各向同性腐蚀
蓝宝石
表面光洁度
光电子学
辐照
光学
蚀刻(微加工)
纳米技术
复合材料
航空航天工程
核物理学
工程类
物理
图层(电子)
作者
Chen Wu,Xudong Fang,Qiang Kang,Hao Sun,Libo Zhao,Bian Tian,Ziyan Fang,Maolin Pan,Ryutaro Maeda,Zhuangde Jiang
标识
DOI:10.1016/j.surfcoat.2021.127652
摘要
SiC, as one typical 3rd generation semiconductor, has high potential to be used as the substrate for harsh environment sensors. However, the etching of this material is still challenging. Femtosecond laser has been demonstrated to have great potential in SiC etching, but the material removal mechanisms need further investigation. Herein, the two-temperature model considering carrier concentration is utilized to illustrate the microscopic mechanism of carrier concentration and temperature change in SiC caused by femtosecond laser irradiation. An 800 nm, 50 fs, 10 Hz Ti: sapphire femtosecond laser was used to process SiC in different media including air, HF and water. The ablation threshold of SiC in the three media is calculated. The highest ablation threshold (4.98 J/cm2) is obtained when the pulse number N = 50, in air. The lowest ablation threshold (0.53 J/cm2) is obtained when the pulse number N = 300, in HF. Results indicate that ablation threshold is strongly dependent on the laser pulse number and processing medium. Based on the cleavage phenomenon of SiC crystal structure observed by micro-nano characterization, the mechanism model of femtosecond laser-induced periodic structure of SiC surface based on material lattice cleavage is established, and the relationship between the intrinsic texture and the evolution of periodic structure of ablation surface is revealed. This will provide a new way to understand the ablation mechanism of femtosecond laser. In addition, the processing media has significant effect on surface roughness and chemical bond characteristics of SiC. Liquid processing media can reduce the surface roughness and avoid oxidation, which is helpful to manufacture SiC devices with specific surface requirements using femtosecond laser as an auxiliary method.
科研通智能强力驱动
Strongly Powered by AbleSci AI