接触角
润湿
氧化物
液态金属
基质(水族馆)
材料科学
表面张力
金属
磁滞
表面能
复合材料
微流控
纳米技术
流量(数学)
冶金
机械
凝聚态物理
热力学
地质学
物理
海洋学
作者
Ishan D. Joshipura,K. Alex Persson,Vi Khanh Truong,Ji‐Hyun Oh,Minsik Kong,Man Hou Vong,Chujun Ni,Mohanad Alsafatwi,Dishit P. Parekh,Hong Zhao,Michael D. Dickey
出处
期刊:Langmuir
[American Chemical Society]
日期:2021-09-07
卷期号:37 (37): 10914-10923
被引量:71
标识
DOI:10.1021/acs.langmuir.1c01173
摘要
This work establishes that static contact angles for gallium-based liquid metals have no utility despite the continued and common use of such angles in the literature. In the presence of oxygen, these metals rapidly form a thin (∼1–3 nm) surface oxide "skin" that adheres to many surfaces and mechanically impedes its flow. This property is problematic for contact angle measurements, which presume the ability of liquids to flow freely to adopt shapes that minimize the interfacial energy. We show here that advancing angles for a metal are always high (>140°)—even on substrates to which it adheres—because the solid native oxide must rupture in tension to advance the contact line. The advancing angle for the metal depends subtly on the substrate surface chemistry but does not vary strongly with hydrophobicity of the substrate. During receding measurements, the metal droplet initially sags as the liquid withdraws from the "sac" formed by the skin and thus the contact area with the substrate initially increases despite its volumetric recession. The oxide pins at the perimeter of the deflated "sac" on all the surfaces are tested, except for certain rough surfaces. With additional withdrawal of the liquid metal, the pinned angle gets smaller until eventually the oxide "sac" collapses. Thus, static contact angles can be manipulated mechanically from 0° to >140° due to hysteresis and are therefore uninformative. We also provide recommendations and best practices for wetting experiments, which may find use in applications that use these alloys such as soft electronics, composites, and microfluidics.
科研通智能强力驱动
Strongly Powered by AbleSci AI