Multi-scale Extracting and Second-Order Statistics for Lightweight Steganalysis

隐写分析技术 计算机科学 模式识别(心理学) 人工智能 隐写术 比例(比率) 嵌入 特征提取 特征(语言学) 封面(代数)
作者
Junfu Chen,Zhangjie Fu,Xingming Sun,Enlu Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 548-559
标识
DOI:10.1007/978-3-030-88007-1_45
摘要

Steganography is a technology that modifies complex regions of digital images to embed secret messages for the purpose of covert communication, while steganalysis is to detect whether secret messages are hidden in a digital image or not. In recent years, it has become necessary to deploy computer vision based algorithms on devices that are mobile or have limited computational memories. However, the emergence of steganalysis prove the point that the more parameters available to the model, the better the presentation will be. In order to enable the model to achieve the extraction of steganographic noise with a tiny number of parameters, this paper proposes a lightweight steganalysis algorithm based on multi-scale feature extraction and the fusion of multi-order statistical properties. Compared with Yedroudj-Net, Zhu-Net and SRNet with S-UNIWARD embedding rate of 0.4 bpp, the numbers of parameters was decreased by 87.9%, 98.2%, 98.9% correspondingly and the accuracy of steganalysis was improved by 7.12%, 2.65%, 3.42% respectively. Our experimental results show that the model not only has a reduced number of parameters for existing steganalysis, but also can effectively boost the accuracy of steganalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咩咩羊发布了新的文献求助10
刚刚
赘婿应助月亮是甜的采纳,获得10
1秒前
yue应助乐生采纳,获得20
2秒前
2秒前
2秒前
duanhuiyuan应助ran采纳,获得10
4秒前
4秒前
外向的书包完成签到,获得积分10
5秒前
penny发布了新的文献求助10
6秒前
惠_____完成签到 ,获得积分10
7秒前
8秒前
9秒前
10秒前
Singularity应助董竹君采纳,获得10
10秒前
12秒前
12秒前
13秒前
14秒前
15秒前
寒江雪完成签到,获得积分10
15秒前
16秒前
王慧康发布了新的文献求助10
16秒前
qizhixu发布了新的文献求助10
16秒前
mmmmmmgm完成签到 ,获得积分10
16秒前
wanci应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
12334应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
无餍应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644