亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning‐based motion tracking using ultrasound images

人工智能 计算机科学 计算机视觉 基本事实 帧(网络) 跟踪(教育) 分割 帧速率 深度学习 模式识别(心理学) 心理学 教育学 电信
作者
Xianjin Dai,Yang Lei,Justin Roper,Yue Chen,Jeffrey D. Bradley,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7747-7756 被引量:10
标识
DOI:10.1002/mp.15321
摘要

Abstract Purpose Ultrasound (US) imaging is an established imaging modality capable of offering video‐rate volumetric images without ionizing radiation. It has the potential for intra‐fraction motion tracking in radiation therapy. In this study, a deep learning‐based method has been developed to tackle the challenges in motion tracking using US imaging. Methods We present a Markov‐like network, which is implemented via generative adversarial networks, to extract features from sequential US frames (one tracked frame followed by untracked frames) and thereby estimate a set of deformation vector fields (DVFs) through the registration of the tracked frame and the untracked frames. The positions of the landmarks in the untracked frames are finally determined by shifting landmarks in the tracked frame according to the estimated DVFs. The performance of the proposed method was evaluated on the testing dataset by calculating the tracking error (TE) between the predicted and ground truth landmarks on each frame. Results The proposed method was evaluated using the MICCAI CLUST 2015 dataset which was collected using seven US scanners with eight types of transducers and the Cardiac Acquisitions for Multi‐structure Ultrasound Segmentation (CAMUS) dataset which was acquired using GE Vivid E95 ultrasound scanners. The CLUST dataset contains 63 2D and 22 3D US image sequences respectively from 42 and 18 subjects, and the CAMUS dataset includes 2D US images from 450 patients. On CLUST dataset, our proposed method achieved a mean tracking error of 0.70 ± 0.38 mm for the 2D sequences and 1.71 ± 0.84 mm for the 3D sequences for those public available annotations. And on CAMUS dataset, a mean tracking error of 0.54 ± 1.24 mm for the landmarks in the left atrium was achieved. Conclusions A novel motion tracking algorithm using US images based on modern deep learning techniques has been demonstrated in this study. The proposed method can offer millimeter‐level tumor motion prediction in real time, which has the potential to be adopted into routine tumor motion management in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rabbit发布了新的文献求助10
1秒前
9秒前
29秒前
kaka完成签到,获得积分10
32秒前
nsc发布了新的文献求助10
35秒前
思源应助nsc采纳,获得10
50秒前
酷波er应助Rabbit采纳,获得10
53秒前
量子星尘发布了新的文献求助10
1分钟前
Rabbit完成签到,获得积分10
1分钟前
1分钟前
nsc发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
3分钟前
ICE_MILK发布了新的文献求助10
3分钟前
郗妫完成签到,获得积分10
3分钟前
3分钟前
ICE_MILK完成签到,获得积分10
3分钟前
jarrykim完成签到,获得积分10
3分钟前
勿惏发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
kaka发布了新的文献求助10
4分钟前
4分钟前
4分钟前
完美世界应助勿惏采纳,获得10
4分钟前
4分钟前
fladen给仗剑Z天涯的求助进行了留言
4分钟前
研友_VZG7GZ应助cqhecq采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
彭于晏应助Rick采纳,获得10
6分钟前
6分钟前
SciGPT应助浅弋采纳,获得10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264