Deep learning‐based motion tracking using ultrasound images

人工智能 计算机科学 计算机视觉 基本事实 帧(网络) 跟踪(教育) 分割 帧速率 深度学习 模式识别(心理学) 心理学 教育学 电信
作者
Xianjin Dai,Yang Lei,Justin Roper,Yue Chen,Jeffrey D. Bradley,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7747-7756 被引量:10
标识
DOI:10.1002/mp.15321
摘要

Abstract Purpose Ultrasound (US) imaging is an established imaging modality capable of offering video‐rate volumetric images without ionizing radiation. It has the potential for intra‐fraction motion tracking in radiation therapy. In this study, a deep learning‐based method has been developed to tackle the challenges in motion tracking using US imaging. Methods We present a Markov‐like network, which is implemented via generative adversarial networks, to extract features from sequential US frames (one tracked frame followed by untracked frames) and thereby estimate a set of deformation vector fields (DVFs) through the registration of the tracked frame and the untracked frames. The positions of the landmarks in the untracked frames are finally determined by shifting landmarks in the tracked frame according to the estimated DVFs. The performance of the proposed method was evaluated on the testing dataset by calculating the tracking error (TE) between the predicted and ground truth landmarks on each frame. Results The proposed method was evaluated using the MICCAI CLUST 2015 dataset which was collected using seven US scanners with eight types of transducers and the Cardiac Acquisitions for Multi‐structure Ultrasound Segmentation (CAMUS) dataset which was acquired using GE Vivid E95 ultrasound scanners. The CLUST dataset contains 63 2D and 22 3D US image sequences respectively from 42 and 18 subjects, and the CAMUS dataset includes 2D US images from 450 patients. On CLUST dataset, our proposed method achieved a mean tracking error of 0.70 ± 0.38 mm for the 2D sequences and 1.71 ± 0.84 mm for the 3D sequences for those public available annotations. And on CAMUS dataset, a mean tracking error of 0.54 ± 1.24 mm for the landmarks in the left atrium was achieved. Conclusions A novel motion tracking algorithm using US images based on modern deep learning techniques has been demonstrated in this study. The proposed method can offer millimeter‐level tumor motion prediction in real time, which has the potential to be adopted into routine tumor motion management in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弥淮发布了新的文献求助10
刚刚
浓浓的淡淡完成签到 ,获得积分10
2秒前
糟糕的铃铛完成签到,获得积分10
3秒前
杨金城完成签到,获得积分20
3秒前
ZLY完成签到,获得积分10
4秒前
HXS688完成签到 ,获得积分10
6秒前
科目三应助弥淮采纳,获得10
7秒前
姆姆没买发布了新的文献求助20
8秒前
betty完成签到,获得积分10
10秒前
JamesPei应助张张采纳,获得10
10秒前
11秒前
xuxuxu发布了新的文献求助10
12秒前
lilili完成签到,获得积分20
12秒前
粗暴的醉卉完成签到,获得积分10
12秒前
betty发布了新的文献求助10
13秒前
loong完成签到,获得积分10
14秒前
fan完成签到 ,获得积分10
15秒前
15秒前
Jasper应助江浙涵涵采纳,获得10
16秒前
爆米花应助任小九采纳,获得10
16秒前
chris发布了新的文献求助10
17秒前
超人爱吃菠菜完成签到,获得积分10
18秒前
lilili发布了新的文献求助10
18秒前
21秒前
xx完成签到,获得积分10
21秒前
小机灵鬼儿完成签到,获得积分10
24秒前
25秒前
xuxuxu完成签到,获得积分10
25秒前
YUAN完成签到,获得积分10
25秒前
成就的灵薇完成签到,获得积分10
26秒前
无花果应助七七采纳,获得10
27秒前
28秒前
星辰大海应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
子车茗应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
30秒前
wangli应助科研通管家采纳,获得10
30秒前
30秒前
怕黑紫伊发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161167
求助须知:如何正确求助?哪些是违规求助? 2812556
关于积分的说明 7895642
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315977
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112