亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Locality-Constrained Collaborative Representation with Multi-resolution Dictionary for Face Recognition.

稀疏逼近 面子(社会学概念) 代表(政治) 特征学习 模式识别(心理学) 特征(语言学)
作者
Zhen Liu,Xiaojun Wu,He-Feng Yin,Tianyang Xu,Zhenqiu Shu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-66 被引量:1
标识
DOI:10.1007/978-3-030-88004-0_5
摘要

Sparse learning methods have drawn considerable attention in face recognition, and there are still some problems need to be further studied. For example, most of the conventional sparse learning methods concentrate only on a single resolution, which neglects the fact that the resolutions of real-world face images are variable when they are captured by different cameras. Although the multi-resolution dictionary learning (MRDL) method considers the problem of image resolution, it takes a lot of training time to learn a concise and reliable dictionary and neglects the local relationship of data. To overcome the above problems, we propose a locality-constrained collaborative representation with multi-resolution dictionary (LCCR-MRD) method for face recognition. First, we extend the traditional collaborative representation based classification (CRC) method to the multi-resolution dictionary case without dictionary learning. Second, the locality relationship characterized by the distance between test sample and training sample is used to learn weight of representation coefficient, and the similar sample is forced to make more contribution to representation. Last, LCCR-MRD has a closed-form solution, which makes it simple. Experiments on five widely-used face databases demonstrate that LCCR-MRD outperforms many state-of-art sparse learning methods. The Matlab codes of LCCR-MRD are publicly available at https://github.com/masterliuhzen/LCCR-MRD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
9秒前
浮游漂漂应助科研通管家采纳,获得30
9秒前
Xx完成签到 ,获得积分10
10秒前
踏实的绣连完成签到 ,获得积分10
11秒前
111发布了新的文献求助10
14秒前
yr应助牛油果采纳,获得10
23秒前
25秒前
38秒前
summer完成签到,获得积分20
38秒前
43秒前
dad0ng发布了新的文献求助10
44秒前
49秒前
小二郎应助dad0ng采纳,获得10
50秒前
南风南下完成签到 ,获得积分10
51秒前
Yu发布了新的文献求助10
53秒前
zyyyy发布了新的文献求助10
54秒前
54秒前
jami-yu发布了新的文献求助10
56秒前
jewel9完成签到,获得积分10
56秒前
在水一方应助Yu采纳,获得10
58秒前
明天一定早睡关注了科研通微信公众号
1分钟前
1分钟前
研友_LaOyQZ完成签到,获得积分10
1分钟前
A_123应助坦率的尔冬采纳,获得10
1分钟前
jami-yu完成签到,获得积分10
1分钟前
坦率的尔冬完成签到,获得积分10
1分钟前
万能图书馆应助哈哈哈采纳,获得10
1分钟前
1分钟前
dida完成签到,获得积分10
1分钟前
1分钟前
螃蟹发布了新的文献求助10
1分钟前
布布柳丁应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
布布柳丁应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763871
求助须知:如何正确求助?哪些是违规求助? 5545305
关于积分的说明 15405600
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635548
邀请新用户注册赠送积分活动 1583722
关于科研通互助平台的介绍 1538812