Locality-Constrained Collaborative Representation with Multi-resolution Dictionary for Face Recognition.

稀疏逼近 面子(社会学概念) 代表(政治) 特征学习 模式识别(心理学) 特征(语言学)
作者
Zhen Liu,Xiaojun Wu,He-Feng Yin,Tianyang Xu,Zhenqiu Shu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-66 被引量:1
标识
DOI:10.1007/978-3-030-88004-0_5
摘要

Sparse learning methods have drawn considerable attention in face recognition, and there are still some problems need to be further studied. For example, most of the conventional sparse learning methods concentrate only on a single resolution, which neglects the fact that the resolutions of real-world face images are variable when they are captured by different cameras. Although the multi-resolution dictionary learning (MRDL) method considers the problem of image resolution, it takes a lot of training time to learn a concise and reliable dictionary and neglects the local relationship of data. To overcome the above problems, we propose a locality-constrained collaborative representation with multi-resolution dictionary (LCCR-MRD) method for face recognition. First, we extend the traditional collaborative representation based classification (CRC) method to the multi-resolution dictionary case without dictionary learning. Second, the locality relationship characterized by the distance between test sample and training sample is used to learn weight of representation coefficient, and the similar sample is forced to make more contribution to representation. Last, LCCR-MRD has a closed-form solution, which makes it simple. Experiments on five widely-used face databases demonstrate that LCCR-MRD outperforms many state-of-art sparse learning methods. The Matlab codes of LCCR-MRD are publicly available at https://github.com/masterliuhzen/LCCR-MRD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bey发布了新的文献求助10
1秒前
3秒前
Ava应助蝶步韶华采纳,获得10
3秒前
心心完成签到,获得积分20
4秒前
5秒前
aaaaaa完成签到 ,获得积分10
9秒前
10秒前
Bey完成签到,获得积分10
10秒前
娇气的天亦完成签到 ,获得积分10
11秒前
12秒前
12秒前
心心发布了新的文献求助10
12秒前
14秒前
星辰大海应助丁dd采纳,获得10
14秒前
王一线完成签到,获得积分10
15秒前
AARON完成签到,获得积分10
16秒前
曲悦完成签到,获得积分20
16秒前
16秒前
蝶步韶华发布了新的文献求助10
17秒前
17秒前
一只五条悟完成签到,获得积分10
18秒前
wen发布了新的文献求助10
19秒前
19秒前
颜沐发布了新的文献求助10
20秒前
小谷发布了新的文献求助10
20秒前
fmwang驳回了pcr163应助
21秒前
yution完成签到,获得积分10
21秒前
SYLH应助科研通管家采纳,获得10
21秒前
坚强亦丝应助科研通管家采纳,获得10
21秒前
21秒前
逢陈应助科研通管家采纳,获得10
21秒前
lierking应助科研通管家采纳,获得30
22秒前
华仔应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
SYLH应助科研通管家采纳,获得20
22秒前
大个应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
Jana应助科研通管家采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461286
求助须知:如何正确求助?哪些是违规求助? 3054997
关于积分的说明 9046106
捐赠科研通 2744930
什么是DOI,文献DOI怎么找? 1505743
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264