Locality-Constrained Collaborative Representation with Multi-resolution Dictionary for Face Recognition.

稀疏逼近 面子(社会学概念) 代表(政治) 特征学习 模式识别(心理学) 特征(语言学)
作者
Zhen Liu,Xiaojun Wu,He-Feng Yin,Tianyang Xu,Zhenqiu Shu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-66 被引量:1
标识
DOI:10.1007/978-3-030-88004-0_5
摘要

Sparse learning methods have drawn considerable attention in face recognition, and there are still some problems need to be further studied. For example, most of the conventional sparse learning methods concentrate only on a single resolution, which neglects the fact that the resolutions of real-world face images are variable when they are captured by different cameras. Although the multi-resolution dictionary learning (MRDL) method considers the problem of image resolution, it takes a lot of training time to learn a concise and reliable dictionary and neglects the local relationship of data. To overcome the above problems, we propose a locality-constrained collaborative representation with multi-resolution dictionary (LCCR-MRD) method for face recognition. First, we extend the traditional collaborative representation based classification (CRC) method to the multi-resolution dictionary case without dictionary learning. Second, the locality relationship characterized by the distance between test sample and training sample is used to learn weight of representation coefficient, and the similar sample is forced to make more contribution to representation. Last, LCCR-MRD has a closed-form solution, which makes it simple. Experiments on five widely-used face databases demonstrate that LCCR-MRD outperforms many state-of-art sparse learning methods. The Matlab codes of LCCR-MRD are publicly available at https://github.com/masterliuhzen/LCCR-MRD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助草上飞采纳,获得10
刚刚
哈噜噗噜发布了新的文献求助10
1秒前
1秒前
gdh完成签到,获得积分10
1秒前
以戈发布了新的文献求助30
1秒前
2秒前
xingfangshu发布了新的文献求助10
2秒前
阿越应助蛋挞采纳,获得10
3秒前
天天快乐应助于特采纳,获得10
3秒前
3秒前
3秒前
wyblobin发布了新的文献求助10
4秒前
李健应助滚去学习采纳,获得10
4秒前
gaogao发布了新的文献求助10
4秒前
4秒前
槿荣发布了新的文献求助10
5秒前
英姑应助文艺乐蕊采纳,获得30
5秒前
陌上完成签到,获得积分10
6秒前
自由的尔蓉完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
sophia完成签到 ,获得积分10
7秒前
淡淡的小松鼠完成签到,获得积分10
8秒前
你讲咩发布了新的文献求助10
8秒前
陈早早完成签到,获得积分10
8秒前
8秒前
爆米花应助allofme采纳,获得10
8秒前
kyou完成签到,获得积分10
8秒前
8秒前
lingboxian完成签到,获得积分10
9秒前
阅读发布了新的文献求助10
9秒前
9秒前
吃不胖的魔芋丝完成签到 ,获得积分10
10秒前
10秒前
槿荣完成签到,获得积分10
10秒前
上官若男应助青阳采纳,获得10
11秒前
夕荀发布了新的文献求助10
11秒前
草上飞发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559758
求助须知:如何正确求助?哪些是违规求助? 3986111
关于积分的说明 12341862
捐赠科研通 3656799
什么是DOI,文献DOI怎么找? 2014599
邀请新用户注册赠送积分活动 1049307
科研通“疑难数据库(出版商)”最低求助积分说明 937635