The Learning Curve of Artificial Intelligence for Dental Implant Treatment Planning: A Descriptive Study

人工智能 计算机科学 软件 放射治疗计划 国际商用机器公司 数据集 计算机视觉 牙科 医学 材料科学 内科学 程序设计语言 纳米技术 放射治疗
作者
Pathompong Roongruangsilp,Pathawee Khongkhunthian
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (21): 10159-10159 被引量:13
标识
DOI:10.3390/app112110159
摘要

Introduction: Cone-beam computed tomography (CBCT) has been applied to implant dentistry. The increasing use of this technology produces a critical number of images that can be used for training artificial intelligence (AI). Objectives: To investigate the learning curve of the developed AI for dental implant planning in the posterior maxillary region. Methods: A total of 184 CBCT image sets of patients receiving posterior maxillary implants were processed with software (DentiPlan Pro version 3.7; NECTEC, NSTDA, Thailand) to acquire 316 implant position images. The planning software image interfaces were anonymously captured with full-screen resolution. Three hundred images were randomly sorted to create six data sets, including 1–50, 1–100, 1–150, 1–200, 1–250, and 1–300. The data sets were used to develop AI for dental implant planning through the IBM PowerAI Vision platform (IBM Thailand Co., Ltd., Bangkok, Thailand) by using a faster R-CNN algorithm. Four data augmentation algorithms, including blur, sharpen, color, and noise, were also integrated to observe the improvement of the model. After the testing process with 16 images that were not included in the training set, the recorded data were analyzed for detection and accuracy to generate the learning curve of the model. Results: The learning curve revealed some similar patterns. The curve trend of the original and blurred augmented models was in a similar pattern in the panoramic image. In the last training set, the blurred augmented model improved the detection by 12.50%, but showed less accuracy than the original model by 18.34%, whereas the other three augmented models had different patterns. They were continuously increasing in both detection and accuracy. However, their detection dropped in the last training set. The colored augmented model demonstrated the best improvement with 40% for the panoramic image and 18.59% for the cross-sectional image. Conclusions: Within the limitation of the study, it may be concluded that the number of images used in AI development is positively related to the AI interpretation. The data augmentation techniques to improve the ability of AI are still questionable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PCEEN发布了新的文献求助10
刚刚
miamia77完成签到,获得积分10
刚刚
1秒前
含蓄的赛君完成签到,获得积分10
1秒前
SYLH应助优秀斑马采纳,获得10
2秒前
傻傻完成签到,获得积分10
3秒前
mjje完成签到,获得积分10
3秒前
4秒前
ZMH发布了新的文献求助10
4秒前
Orange应助PCEEN采纳,获得10
5秒前
6秒前
LBQ完成签到,获得积分10
7秒前
7秒前
Panchael完成签到,获得积分10
8秒前
哈哈哈发布了新的文献求助10
8秒前
传统的孤丝完成签到 ,获得积分10
9秒前
9秒前
上好佳发布了新的文献求助10
10秒前
博修发布了新的文献求助200
10秒前
10秒前
Brain发布了新的文献求助10
12秒前
Zel博博发布了新的文献求助10
12秒前
超帅的不尤完成签到,获得积分10
12秒前
MOMO完成签到 ,获得积分10
14秒前
16秒前
正在下雨完成签到 ,获得积分10
16秒前
小文完成签到,获得积分10
17秒前
19秒前
TiYooY发布了新的文献求助10
20秒前
彗星入梦完成签到 ,获得积分10
21秒前
22秒前
王恩惠发布了新的文献求助10
22秒前
yx完成签到,获得积分10
22秒前
研友_VZG7GZ应助王德威采纳,获得10
22秒前
22秒前
小乔同学发布了新的文献求助10
23秒前
哈哈哈完成签到,获得积分10
23秒前
认真平蝶发布了新的文献求助10
23秒前
25秒前
Akim应助Coral.采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993