The Learning Curve of Artificial Intelligence for Dental Implant Treatment Planning: A Descriptive Study

人工智能 计算机科学 软件 放射治疗计划 国际商用机器公司 数据集 计算机视觉 牙科 医学 材料科学 内科学 纳米技术 程序设计语言 放射治疗
作者
Pathompong Roongruangsilp,Pathawee Khongkhunthian
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (21): 10159-10159 被引量:13
标识
DOI:10.3390/app112110159
摘要

Introduction: Cone-beam computed tomography (CBCT) has been applied to implant dentistry. The increasing use of this technology produces a critical number of images that can be used for training artificial intelligence (AI). Objectives: To investigate the learning curve of the developed AI for dental implant planning in the posterior maxillary region. Methods: A total of 184 CBCT image sets of patients receiving posterior maxillary implants were processed with software (DentiPlan Pro version 3.7; NECTEC, NSTDA, Thailand) to acquire 316 implant position images. The planning software image interfaces were anonymously captured with full-screen resolution. Three hundred images were randomly sorted to create six data sets, including 1–50, 1–100, 1–150, 1–200, 1–250, and 1–300. The data sets were used to develop AI for dental implant planning through the IBM PowerAI Vision platform (IBM Thailand Co., Ltd., Bangkok, Thailand) by using a faster R-CNN algorithm. Four data augmentation algorithms, including blur, sharpen, color, and noise, were also integrated to observe the improvement of the model. After the testing process with 16 images that were not included in the training set, the recorded data were analyzed for detection and accuracy to generate the learning curve of the model. Results: The learning curve revealed some similar patterns. The curve trend of the original and blurred augmented models was in a similar pattern in the panoramic image. In the last training set, the blurred augmented model improved the detection by 12.50%, but showed less accuracy than the original model by 18.34%, whereas the other three augmented models had different patterns. They were continuously increasing in both detection and accuracy. However, their detection dropped in the last training set. The colored augmented model demonstrated the best improvement with 40% for the panoramic image and 18.59% for the cross-sectional image. Conclusions: Within the limitation of the study, it may be concluded that the number of images used in AI development is positively related to the AI interpretation. The data augmentation techniques to improve the ability of AI are still questionable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
怡然铃铛发布了新的文献求助10
1秒前
搜集达人应助Denmark采纳,获得30
1秒前
123完成签到,获得积分10
2秒前
丘比特应助tt采纳,获得10
2秒前
lucilleshen发布了新的文献求助30
3秒前
球球发布了新的文献求助10
3秒前
肖窈完成签到,获得积分10
4秒前
情怀应助宇文书翠采纳,获得10
4秒前
Hello应助damn采纳,获得10
5秒前
5秒前
完美世界应助张嘉伟采纳,获得10
5秒前
852应助云_123采纳,获得10
6秒前
6秒前
6秒前
1872完成签到,获得积分10
7秒前
希望天下0贩的0应助sumei采纳,获得10
7秒前
bkagyin应助科研小白采纳,获得10
8秒前
8秒前
乐乐应助田所浩二采纳,获得10
8秒前
Akim应助酷酷含羞草采纳,获得10
8秒前
橙蛋梨完成签到,获得积分10
9秒前
甜甜问儿发布了新的文献求助10
9秒前
李健的小迷弟应助小六采纳,获得10
10秒前
11秒前
赵珊发布了新的文献求助10
12秒前
12秒前
13秒前
windli发布了新的文献求助10
13秒前
JXY发布了新的文献求助10
14秒前
14秒前
yaoccccchen完成签到,获得积分10
15秒前
15秒前
尊敬的金针菇完成签到,获得积分10
16秒前
张小桐完成签到,获得积分10
16秒前
云_123发布了新的文献求助10
16秒前
17秒前
粗暴的君浩完成签到,获得积分10
17秒前
17秒前
孳孳为善6387完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847