The Learning Curve of Artificial Intelligence for Dental Implant Treatment Planning: A Descriptive Study

人工智能 计算机科学 软件 放射治疗计划 国际商用机器公司 数据集 计算机视觉 牙科 医学 材料科学 内科学 纳米技术 程序设计语言 放射治疗
作者
Pathompong Roongruangsilp,Pathawee Khongkhunthian
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (21): 10159-10159 被引量:13
标识
DOI:10.3390/app112110159
摘要

Introduction: Cone-beam computed tomography (CBCT) has been applied to implant dentistry. The increasing use of this technology produces a critical number of images that can be used for training artificial intelligence (AI). Objectives: To investigate the learning curve of the developed AI for dental implant planning in the posterior maxillary region. Methods: A total of 184 CBCT image sets of patients receiving posterior maxillary implants were processed with software (DentiPlan Pro version 3.7; NECTEC, NSTDA, Thailand) to acquire 316 implant position images. The planning software image interfaces were anonymously captured with full-screen resolution. Three hundred images were randomly sorted to create six data sets, including 1–50, 1–100, 1–150, 1–200, 1–250, and 1–300. The data sets were used to develop AI for dental implant planning through the IBM PowerAI Vision platform (IBM Thailand Co., Ltd., Bangkok, Thailand) by using a faster R-CNN algorithm. Four data augmentation algorithms, including blur, sharpen, color, and noise, were also integrated to observe the improvement of the model. After the testing process with 16 images that were not included in the training set, the recorded data were analyzed for detection and accuracy to generate the learning curve of the model. Results: The learning curve revealed some similar patterns. The curve trend of the original and blurred augmented models was in a similar pattern in the panoramic image. In the last training set, the blurred augmented model improved the detection by 12.50%, but showed less accuracy than the original model by 18.34%, whereas the other three augmented models had different patterns. They were continuously increasing in both detection and accuracy. However, their detection dropped in the last training set. The colored augmented model demonstrated the best improvement with 40% for the panoramic image and 18.59% for the cross-sectional image. Conclusions: Within the limitation of the study, it may be concluded that the number of images used in AI development is positively related to the AI interpretation. The data augmentation techniques to improve the ability of AI are still questionable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI5应助xy采纳,获得10
1秒前
曼冬发布了新的文献求助10
1秒前
上官若男应助sjxx采纳,获得10
1秒前
2秒前
守墓人完成签到 ,获得积分10
2秒前
榴莲完成签到,获得积分10
2秒前
对照完成签到 ,获得积分10
2秒前
3秒前
3秒前
初闻完成签到,获得积分10
4秒前
惠惠发布了新的文献求助10
4秒前
慕青应助a1oft采纳,获得10
5秒前
叶十七完成签到,获得积分10
5秒前
汉堡包应助宇_采纳,获得10
5秒前
SciGPT应助H71000A采纳,获得10
5秒前
侦察兵发布了新的文献求助10
6秒前
自然乐松关注了科研通微信公众号
6秒前
zqfxc完成签到,获得积分10
6秒前
sumeiling完成签到,获得积分20
6秒前
朴素的鸡完成签到,获得积分20
7秒前
大七发布了新的文献求助10
7秒前
zzzq完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
请叫我风吹麦浪应助卡卡采纳,获得10
8秒前
传奇3应助起司嗯采纳,获得10
9秒前
remimazolam发布了新的文献求助10
10秒前
在水一方应助悦耳寒松采纳,获得10
10秒前
满座完成签到,获得积分10
10秒前
科研通AI2S应助coffee采纳,获得10
10秒前
11秒前
雪山飞龙发布了新的文献求助30
11秒前
科研通AI5应助phd采纳,获得10
12秒前
善学以致用应助京阿尼采纳,获得10
12秒前
Sylvia完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794