Manufacturing Anti-CD19 CAR-Tscm Cells for Immunotherapy Using Innovative Microbubble-Based Technologies for Precision Cell Processing

CD19 体内 细胞疗法 嵌合抗原受体 细胞毒性T细胞 免疫疗法 CD8型 单元格排序 癌症研究 微气泡 过继性细胞移植 化学 免疫学 抗原 体外 医学 细胞 流式细胞术 生物 免疫系统 生物化学 生物技术 超声波 放射科
作者
Chuntang Fu,Guixin Shi,Yu‐Tsueng Liu
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 3889-3889 被引量:2
标识
DOI:10.1182/blood-2021-144684
摘要

Abstract INTRODUCTION Chimeric antigen receptor (CAR) T cell therapy provides a potential cure for patients who don't respond to standard treatments. One of the major challenges for current mainstream CAR-T therapy is lack of in vivo persistence of transferred cells. Intriguingly, more differentiated effector T cells that acquire enhanced in vitro anti-tumor properties were found to be paradoxically less effective for in vivo tumor treatment. It has become clear that the persistence of adoptive transferred T cells is crucial for in vivo activities. A significant linear correlation was found between the differentiation status of infused T cells and the potency of tumor regression, in the order of Tscm > Tcm >Tem. While promising, CAR-Tscm cell therapy demands technical innovation for precision cell processing and production. Here, we show CAR-Tscm cells generated by microbubble-based technologies for precision T cell sorting and activation and viral transduction are more robust than those generated by the conventional method in in vitro assays and in vivo animal study using the NSG mouse model. METHODS Naïve T cells were isolated by sequential sorting with 3 targeted lipid shell microbubbles (conjugated with anti-CD8, anti-CD45RA, and anti-CD62L). Briefly, CD8+ T cells were floated by anti-CD8 conjugated microbubbles and separated from nontargeted cells in PBMC. The floated CD8+ cells returned to solution after the microbubbles had undergone dissolution by increasing ambient pressure. These cells were subsequently floated by anti-CD45RA and anti-CD62L microbubbles sequentially, as described earlier. To generate CD19-CAR-modified Tscm-enriched cells, isolated naïve T cells were activated by anti-CD3/CD28 conjugated microbubbles and transduced by CD19-CAR retrovirus via Retronectin conjugated microbubbles. Transduced naïve T cells were cultured in media with IL-7, IL-21, and TWS119. Control CD19-CAR T cells were produced from same donors' PBMCs using standard culture conditions (soluble IL-2 and anti-CD3/CD28 coated culture flasks). Raji cells were co-cultured with effector cells (Tscm-enriched and standard CD19 CAR T cells) at a gradient ET ratio for in vitro cytotoxicity assay. Tscm-enriched and standard CD19-CAR T cells were injected into Raji-luc-bearing NSG mice. Tumor burden was measured by the XenogenIVIS system. RESULTS Naïve CD8+ T lymphocytes were enriched by sequential isolation of CD8+, CD62L+, and CD45RA+ cells from healthy donor PBMCs using respective antibody conjugated microbubbles. The CD8, CD62L, and CD45RA triple positive population was enriched from initial 10.08%± 2.4% to 71.84%±1.9% (n=4). We discovered that Retronectin conjugated microbubbles are advantageous to replace spinoculation technique to simplify viral transduction procedures. The average transduction efficiency was 27.71%± 8.7% using unconcentrated retroviral vectors. The Tscm-like cells were significantly enriched after two-week culture, compared to the standard method (37.78± 14.5% vs. 4.38± 0.7%). Tscm-enriched CD19-CAR T cells exhibited a stronger in vitro cytotoxicity towards Raji cells in comparison with standard CD19-CAR T cells (Figure 1). Consistently, in the NSG mice engrafted with Raji-Luc cancer cells, the CD19-CAR-modified Tscm-enriched cells showed longer-lasting antitumor responses than the CD19-CAR-T cells generated by the standard manufacturing process (Figure 2). CONCLUSION We have developed a bead-free, multi-positive selection system for CAR-Tscm production, and demonstrated that these Tscm cells effectively cause tumor regression and prolong diseased animal lifespan. A closed, automated, microbubble-based CAR-T cell manufacturing system, combining T cell isolation, activation, and transduction will be developed to improve performance and reduce costs. Figure 1 Figure 1. Disclosures Fu: Diagnologix LLC: Current Employment. Shi: Diagnologix LLC: Current Employment. Liu: Diagnologix LLC: Current Employment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文cremen完成签到 ,获得积分10
刚刚
yu发布了新的文献求助10
2秒前
AireenBeryl531应助许0602采纳,获得50
2秒前
3秒前
如果完成签到,获得积分10
4秒前
Owen应助活力数据线采纳,获得10
6秒前
传奇3应助饱满的毛巾采纳,获得10
6秒前
所所应助一二三采纳,获得10
7秒前
美好钻石完成签到,获得积分10
8秒前
如果发布了新的文献求助10
8秒前
8秒前
李爱国应助皮皮虾采纳,获得10
8秒前
8秒前
11秒前
感动书文完成签到,获得积分10
11秒前
一往之前发布了新的文献求助10
12秒前
在水一方应助sss采纳,获得10
12秒前
可靠的电源完成签到,获得积分10
12秒前
star关注了科研通微信公众号
13秒前
科研通AI2S应助晶生采纳,获得10
13秒前
Leafff发布了新的文献求助10
16秒前
yu完成签到,获得积分10
16秒前
pace完成签到,获得积分10
17秒前
不配.应助一往之前采纳,获得20
17秒前
一二三完成签到,获得积分20
18秒前
Schroenius完成签到 ,获得积分10
18秒前
云瑾应助葛辉辉采纳,获得20
18秒前
18秒前
ailemonmint完成签到 ,获得积分10
19秒前
22秒前
bkagyin应助wangayting采纳,获得30
23秒前
23秒前
24秒前
可爱的函函应助睡不醒采纳,获得10
25秒前
26秒前
一往之前完成签到,获得积分10
26秒前
mayue发布了新的文献求助10
26秒前
27秒前
xzc发布了新的文献求助10
28秒前
狠毒的小龙虾完成签到,获得积分10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046