Generating Synthesized Computed Tomography (CT) from Magnetic Resonance Imaging Using Cycle-Consistent Generative Adversarial Network for Brain Tumor Radiation Therapy

医学 磁共振成像 放射科 放射治疗 脑瘤 人工智能 核医学 计算机科学 病理
作者
Juan Wu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:111 (3): e111-e112 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.518
摘要

Brain tumor is the most common malignant tumor of the head and neck in China, postoperative radiotherapy is one of the main methods to improve the survival rate of patients. Magnetic resonance imaging (MRI) has the advantage of its soft tissue contrast, for the sake of getting the tumor boundary accurately, it is necessary to combine CT/MR image fusing in gross tumor volume (GTV) delineation. In order to avoid the uncertainty caused by multimodal images registration and reduce unnecessary radiation dose, replacing CT with MRI has become one of the research hotspots in the field of radiotherapy. The aim of this study was to use unregistered MRI and CT images from brain tumor patients to generate pseudo-CT images based on a cycle-consistent generative adversarial network (CycleGAN) framework.T1, T2-weighted MRI and CT-simulation images of the whole brain were collected from 31 brain tumor patients. In this work, we have used a CycleGAN framework to generate pseudo-CT images from MRI, this model is capable of image-to-image translation using unpaired MRI and CT images in an unsupervised learning method. Due to the influence of head frame in CT-simulation images and the different scanning range, imaging resolution and contrast of each patient, preprocessing of MRI and CT images, such as clipping, background removal, resampling and normalization, was required firstly. Secondly, in order to compensate for the insufficient to separate all major tissue types by the single MR sequence, each patient's T1/T2-weighted MR image pair was served as the input of the CycleGAN framework after registering and fusing. Finally, a simple cross-validation study, randomly selecting 70% samples as the training set and the remaining images as the testing set, was performed to compare the quality of synthetic CT and real CT image.The CycleGAN method produced the overall average MAE below 0.24 ± 0.02 and the 0.79 ± 0.03 SSIM value for the testing set images, the heterogeneity between the synthetic CT image and the actual CT image was acceptable.We successfully realized the image-to-image translation using unregistered MRI and CT images based on the CycleGAN framework. The evaluation of pseudo-CT image showed the feasibility and accuracy of this method, which can effectively reduce the error caused by multi-mode image registration in gross tumor volume (GTV) delineation for brain tumor patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助清爽擎汉采纳,获得10
刚刚
喻明辉发布了新的文献求助10
刚刚
安静代萱完成签到 ,获得积分10
1秒前
似月白发布了新的文献求助10
1秒前
bkagyin应助lyn采纳,获得10
2秒前
2秒前
2秒前
李健的小迷弟应助ZZC采纳,获得10
3秒前
四季夏目完成签到,获得积分10
3秒前
阔达代芹完成签到,获得积分10
3秒前
4秒前
303完成签到 ,获得积分10
5秒前
南兮完成签到,获得积分10
5秒前
WZW关闭了WZW文献求助
6秒前
6秒前
熊i发布了新的文献求助10
7秒前
seal完成签到 ,获得积分10
7秒前
8秒前
困敦发布了新的文献求助10
9秒前
李三阳发布了新的文献求助10
9秒前
乐乐应助害羞雨南采纳,获得10
10秒前
12秒前
完美世界应助玩命的代梅采纳,获得10
13秒前
小火苗发布了新的文献求助10
14秒前
标致的坤完成签到,获得积分10
15秒前
15秒前
苏颜玉完成签到,获得积分10
16秒前
清爽擎汉发布了新的文献求助10
18秒前
ysy完成签到,获得积分10
19秒前
可爱的函函应助捷克采纳,获得10
20秒前
22秒前
23秒前
萧水白应助dai采纳,获得10
25秒前
aaaa发布了新的文献求助10
27秒前
竹音完成签到,获得积分10
28秒前
子伯完成签到,获得积分10
28秒前
自信的昊焱完成签到,获得积分10
31秒前
今后应助四季夏目采纳,获得10
32秒前
阿槿发布了新的文献求助10
34秒前
善学以致用应助idynamics采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343