清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generating Synthesized Computed Tomography (CT) from Magnetic Resonance Imaging Using Cycle-Consistent Generative Adversarial Network for Brain Tumor Radiation Therapy

医学 磁共振成像 放射科 放射治疗 脑瘤 人工智能 核医学 计算机科学 病理
作者
Juan Wu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3): e111-e112 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.518
摘要

Brain tumor is the most common malignant tumor of the head and neck in China, postoperative radiotherapy is one of the main methods to improve the survival rate of patients. Magnetic resonance imaging (MRI) has the advantage of its soft tissue contrast, for the sake of getting the tumor boundary accurately, it is necessary to combine CT/MR image fusing in gross tumor volume (GTV) delineation. In order to avoid the uncertainty caused by multimodal images registration and reduce unnecessary radiation dose, replacing CT with MRI has become one of the research hotspots in the field of radiotherapy. The aim of this study was to use unregistered MRI and CT images from brain tumor patients to generate pseudo-CT images based on a cycle-consistent generative adversarial network (CycleGAN) framework.T1, T2-weighted MRI and CT-simulation images of the whole brain were collected from 31 brain tumor patients. In this work, we have used a CycleGAN framework to generate pseudo-CT images from MRI, this model is capable of image-to-image translation using unpaired MRI and CT images in an unsupervised learning method. Due to the influence of head frame in CT-simulation images and the different scanning range, imaging resolution and contrast of each patient, preprocessing of MRI and CT images, such as clipping, background removal, resampling and normalization, was required firstly. Secondly, in order to compensate for the insufficient to separate all major tissue types by the single MR sequence, each patient's T1/T2-weighted MR image pair was served as the input of the CycleGAN framework after registering and fusing. Finally, a simple cross-validation study, randomly selecting 70% samples as the training set and the remaining images as the testing set, was performed to compare the quality of synthetic CT and real CT image.The CycleGAN method produced the overall average MAE below 0.24 ± 0.02 and the 0.79 ± 0.03 SSIM value for the testing set images, the heterogeneity between the synthetic CT image and the actual CT image was acceptable.We successfully realized the image-to-image translation using unregistered MRI and CT images based on the CycleGAN framework. The evaluation of pseudo-CT image showed the feasibility and accuracy of this method, which can effectively reduce the error caused by multi-mode image registration in gross tumor volume (GTV) delineation for brain tumor patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
24秒前
迷茫的一代完成签到,获得积分10
31秒前
FUNG发布了新的文献求助10
1分钟前
肆肆完成签到,获得积分10
1分钟前
Tei完成签到,获得积分10
1分钟前
xaopng完成签到,获得积分10
2分钟前
小西完成签到 ,获得积分10
2分钟前
Anan完成签到,获得积分10
3分钟前
木南大宝完成签到 ,获得积分10
3分钟前
乐乐应助Anan采纳,获得10
4分钟前
4分钟前
Anan发布了新的文献求助10
4分钟前
5分钟前
去去去去发布了新的文献求助10
5分钟前
科研通AI2S应助去去去去采纳,获得10
5分钟前
紫熊完成签到,获得积分10
6分钟前
joe完成签到 ,获得积分0
7分钟前
oracl完成签到 ,获得积分10
8分钟前
lilili发布了新的文献求助10
9分钟前
所所应助HudaBala采纳,获得10
9分钟前
辛勤的小海豚完成签到,获得积分10
9分钟前
lilili完成签到,获得积分10
9分钟前
墨海完成签到 ,获得积分10
10分钟前
iuv关闭了iuv文献求助
11分钟前
科研搬运工完成签到,获得积分10
11分钟前
上官若男应助司空天德采纳,获得10
12分钟前
iuv发布了新的文献求助10
12分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
12分钟前
今后应助kingqjack采纳,获得10
12分钟前
13分钟前
HudaBala发布了新的文献求助10
13分钟前
al完成签到 ,获得积分10
13分钟前
Wang完成签到 ,获得积分20
14分钟前
14分钟前
14分钟前
科研通AI2S应助yang采纳,获得10
14分钟前
NS完成签到,获得积分10
17分钟前
zsmj23完成签到 ,获得积分0
17分钟前
17852573662完成签到,获得积分10
17分钟前
17分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142722
求助须知:如何正确求助?哪些是违规求助? 2793589
关于积分的说明 7807032
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328