亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generating Synthesized Computed Tomography (CT) from Magnetic Resonance Imaging Using Cycle-Consistent Generative Adversarial Network for Brain Tumor Radiation Therapy

医学 磁共振成像 放射科 放射治疗 脑瘤 人工智能 核医学 计算机科学 病理
作者
Juan Wu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3): e111-e112 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.518
摘要

Brain tumor is the most common malignant tumor of the head and neck in China, postoperative radiotherapy is one of the main methods to improve the survival rate of patients. Magnetic resonance imaging (MRI) has the advantage of its soft tissue contrast, for the sake of getting the tumor boundary accurately, it is necessary to combine CT/MR image fusing in gross tumor volume (GTV) delineation. In order to avoid the uncertainty caused by multimodal images registration and reduce unnecessary radiation dose, replacing CT with MRI has become one of the research hotspots in the field of radiotherapy. The aim of this study was to use unregistered MRI and CT images from brain tumor patients to generate pseudo-CT images based on a cycle-consistent generative adversarial network (CycleGAN) framework.T1, T2-weighted MRI and CT-simulation images of the whole brain were collected from 31 brain tumor patients. In this work, we have used a CycleGAN framework to generate pseudo-CT images from MRI, this model is capable of image-to-image translation using unpaired MRI and CT images in an unsupervised learning method. Due to the influence of head frame in CT-simulation images and the different scanning range, imaging resolution and contrast of each patient, preprocessing of MRI and CT images, such as clipping, background removal, resampling and normalization, was required firstly. Secondly, in order to compensate for the insufficient to separate all major tissue types by the single MR sequence, each patient's T1/T2-weighted MR image pair was served as the input of the CycleGAN framework after registering and fusing. Finally, a simple cross-validation study, randomly selecting 70% samples as the training set and the remaining images as the testing set, was performed to compare the quality of synthetic CT and real CT image.The CycleGAN method produced the overall average MAE below 0.24 ± 0.02 and the 0.79 ± 0.03 SSIM value for the testing set images, the heterogeneity between the synthetic CT image and the actual CT image was acceptable.We successfully realized the image-to-image translation using unregistered MRI and CT images based on the CycleGAN framework. The evaluation of pseudo-CT image showed the feasibility and accuracy of this method, which can effectively reduce the error caused by multi-mode image registration in gross tumor volume (GTV) delineation for brain tumor patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助harri采纳,获得10
4秒前
Bokuto发布了新的文献求助10
9秒前
11秒前
harri发布了新的文献求助10
16秒前
轻松元柏完成签到,获得积分10
20秒前
清脆的书包关注了科研通微信公众号
32秒前
harri完成签到,获得积分10
38秒前
45秒前
美满尔蓝完成签到,获得积分10
48秒前
P_Chem完成签到,获得积分10
49秒前
socras完成签到 ,获得积分10
50秒前
51秒前
心灵美语兰完成签到 ,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
猫猫豆包完成签到,获得积分10
1分钟前
Orange应助儒雅的冥王星采纳,获得100
2分钟前
2分钟前
笑傲完成签到,获得积分10
2分钟前
情怀应助猫猫豆包采纳,获得10
2分钟前
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
henrychen完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
7分钟前
隐形曼青应助科研小贩采纳,获得10
7分钟前
ranj完成签到,获得积分10
7分钟前
上官若男应助金水相生采纳,获得10
7分钟前
7分钟前
调皮千兰发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4816219
关于积分的说明 15080820
捐赠科研通 4816310
什么是DOI,文献DOI怎么找? 2577281
邀请新用户注册赠送积分活动 1532293
关于科研通互助平台的介绍 1490899