亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral Pansharpening Based on Improved Deep Image Prior and Residual Reconstruction

全色胶片 高光谱成像 增采样 人工智能 残余物 计算机科学 模式识别(心理学) 图像分辨率 计算机视觉 图像(数学) 多光谱图像 算法
作者
Wele Gedara Chaminda Bandara,Jeya Maria Jose Valanarasu,Vishal M. Patel
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:39
标识
DOI:10.1109/tgrs.2021.3139292
摘要

Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic (PAN) image to generate an enhanced HSI with high spectral and spatial resolution. Recently, the proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets), which typically consist of three steps: 1) upsampling the LR-HSI; 2) predicting the residual image via a ConvNet; and 3) obtaining the final fused HSI by adding the outputs from first and second steps. Recent methods have leveraged deep image prior (DIP) to upsample the LR-HSI due to its excellent ability to preserve both spatial and spectral information, without learning from large datasets. However, we observed that the quality of upsampled HSIs can be further improved by introducing an additional spatial-domain constraint to the conventional spectral-domain energy function. We define our spatial-domain constraint as the $L_{1}$ distance between the predicted PAN image and the actual PAN image. To estimate the PAN image of the upsampled HSI, we also propose a learnable spectral response function (SRF). Moreover, we noticed that the residual image between the upsampled HSI and the reference HSI mainly consists of edge information and very fine structures. In order to accurately estimate fine information, we propose a novel overcomplete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers. We perform experiments on three semisynthetic and one real HSI datasets to demonstrate the superiority of our DIP-HyperKite over the state-of-the-art pansharpening methods. The deployment codes, pretrained models, and final fusion outputs of our DIP-HyperKite and the methods used for the comparisons will be publicly made available at https://github.com/wgcban/DIP-HyperKite.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
11秒前
12秒前
科研通AI2S应助迷路匪采纳,获得10
19秒前
28秒前
己凡发布了新的文献求助10
32秒前
鲍文启完成签到 ,获得积分10
39秒前
科目三应助Nacy采纳,获得10
48秒前
58秒前
Nacy发布了新的文献求助10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
yangguang2000应助科研通管家采纳,获得20
1分钟前
1分钟前
己凡发布了新的文献求助10
1分钟前
Jigsaw发布了新的文献求助30
1分钟前
小马甲应助Nacy采纳,获得10
1分钟前
1分钟前
今后应助wjs0406采纳,获得10
1分钟前
Nacy发布了新的文献求助10
2分钟前
2分钟前
己凡发布了新的文献求助10
2分钟前
2分钟前
2分钟前
wjs0406发布了新的文献求助10
2分钟前
SciGPT应助ForeverAE采纳,获得10
2分钟前
wjs0406完成签到,获得积分10
2分钟前
丘比特应助Nacy采纳,获得10
2分钟前
2分钟前
yuan完成签到,获得积分10
2分钟前
Nacy发布了新的文献求助10
2分钟前
Wing完成签到 ,获得积分10
2分钟前
流白发布了新的文献求助20
3分钟前
try完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
yangguang2000应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
yangguang2000应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265467
求助须知:如何正确求助?哪些是违规求助? 2905505
关于积分的说明 8333941
捐赠科研通 2575798
什么是DOI,文献DOI怎么找? 1400130
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532