Challenges in Obtaining Valid Causal Effect Estimates With Machine Learning Algorithms

估计员 混淆 参数统计 计算机科学 置信区间 算法 蒙特卡罗方法 统计 非参数统计 参数化模型 回归 数学
作者
Ashley I. Naimi,Alan Mishler,Edward H. Kennedy
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:192 (9): 1536-1544 被引量:45
标识
DOI:10.1093/aje/kwab201
摘要

Abstract Unlike parametric regression, machine learning (ML) methods do not generally require precise knowledge of the true data-generating mechanisms. As such, numerous authors have advocated for ML methods to estimate causal effects. Unfortunately, ML algorithms can perform worse than parametric regression. We demonstrate the performance of ML-based singly and doubly robust estimators. We used 100 Monte Carlo samples with sample sizes of 200, 1,200, and 5,000 to investigate bias and confidence-interval coverage under several scenarios. In a simple confounding scenario, confounders were related to the treatment and the outcome via parametric models. In a complex confounding scenario, the simple confounders were transformed to induce complicated nonlinear relationships. In the simple scenario, when ML algorithms were used, double-robust estimators were superior to singly robust estimators. In the complex scenario, single-robust estimators with ML algorithms were at least as biased as estimators using misspecified parametric models. Doubly robust estimators were less biased, but coverage was well below nominal. The use of sample splitting, inclusion of confounder interactions, reliance on a richly specified ML algorithm, and use of doubly robust estimators was the only explored approach that yielded negligible bias and nominal coverage. Our results suggest that ML-based singly robust methods should be avoided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子皮完成签到,获得积分10
刚刚
宁安发布了新的文献求助10
2秒前
少时黑羽发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助干净的烧鹅采纳,获得10
3秒前
3秒前
傅以柳发布了新的文献求助10
3秒前
大模型应助last炫神丶采纳,获得10
4秒前
Triones完成签到,获得积分10
4秒前
4秒前
fan完成签到,获得积分10
5秒前
拙青完成签到,获得积分10
5秒前
5秒前
5秒前
小可爱发布了新的文献求助20
6秒前
Erich完成签到 ,获得积分10
7秒前
可靠的书桃应助小小杨采纳,获得10
8秒前
烂漫念文应助鱼鱼采纳,获得10
8秒前
9秒前
琉璃苣发布了新的文献求助10
9秒前
xiyue完成签到,获得积分10
10秒前
biancaliu完成签到,获得积分10
10秒前
动听的笑南完成签到,获得积分10
11秒前
天一发布了新的文献求助30
11秒前
香蕉觅云应助超帅的鑫磊采纳,获得10
13秒前
13秒前
赘婿应助CC采纳,获得30
13秒前
zpj完成签到 ,获得积分10
13秒前
13秒前
14秒前
舒心绝义完成签到,获得积分10
14秒前
orixero应助ai化学采纳,获得10
14秒前
Jade关注了科研通微信公众号
14秒前
huizi发布了新的文献求助10
14秒前
Jaya666完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
琉璃苣完成签到,获得积分10
17秒前
大个应助云_123采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847