清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Oxidant Stress and Acetaminophen Hepatotoxicity: Mechanism-Based Drug Development

医学 对乙酰氨基酚 药理学 氧化应激 肝再生 戒毒(替代医学) 机制(生物学) 乙酰半胱氨酸 生物信息学 肝损伤 生物化学 药品 再生(生物学) 抗氧化剂 生物 病理 内科学 哲学 替代医学 认识论 细胞生物学
作者
Anup Ramachandran,Hartmut Jaeschke
出处
期刊:Antioxidants & Redox Signaling [Mary Ann Liebert]
卷期号:35 (9): 718-733 被引量:35
标识
DOI:10.1089/ars.2021.0102
摘要

Significance: Acetaminophen (APAP) is one of the quantitively most consumed drugs worldwide. Although safe at therapeutic doses, intentional or unintentional overdosing occurs frequently causing severe liver injury and even liver failure. In the United States, 50% of all acute liver failure cases are caused by APAP overdose. However, only one antidote with a limited therapeutic window, N-acetylcysteine, is clinically approved. Thus, more effective therapeutic interventions are urgently needed. Recent Advances: Although APAP hepatotoxicity has been extensively studied for almost 50 years, particular progress has been made recently in two areas. First, there is now a detailed understanding of involvement of oxidative and nitrosative stress in the pathophysiology, with identification of the reactive species involved, their initial generation in mitochondria, amplification through the c-Jun N-terminal kinase pathway, and the mechanisms of cell death. Second, it was demonstrated in human hepatocytes and through biomarkers in vivo that the mechanisms of liver injury in animals accurately reflect the human pathophysiology, which allows the translation of therapeutic targets identified in animals to patients. Critical Issues: For progress, solid understanding of the pathophysiology of APAP hepatotoxicity and of a drug's targets is needed to identify promising new therapeutic intervention strategies and drugs, which may be applied to humans. Future Directions: In addition to further refine the mechanistic understanding of APAP hepatotoxicity and identify additional drugs with complementary mechanisms of action to prevent cell death, more insight into the mechanisms of regeneration and developing of drugs, which promote recovery, remains a future challenge. Antioxid. Redox Signal. 35, 718–733.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
8秒前
石乘云发布了新的文献求助10
11秒前
草木完成签到,获得积分10
18秒前
Singularity应助帮帮我好吗采纳,获得10
21秒前
大轩完成签到 ,获得积分10
38秒前
唐画完成签到,获得积分10
43秒前
58秒前
1分钟前
1分钟前
还单身的绝山完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Singularity完成签到,获得积分0
1分钟前
DQ1175完成签到 ,获得积分10
1分钟前
王治豪发布了新的文献求助10
1分钟前
小二郎应助帮帮我好吗采纳,获得10
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
lovexa完成签到,获得积分10
2分钟前
3分钟前
arsenal完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助Jenny采纳,获得10
3分钟前
星辰大海应助帮帮我好吗采纳,获得10
3分钟前
vsvsgo完成签到,获得积分10
3分钟前
3分钟前
星辰大海应助帮帮我好吗采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
lyj完成签到 ,获得积分10
4分钟前
充电宝应助白华苍松采纳,获得10
4分钟前
房天川完成签到 ,获得积分10
4分钟前
5分钟前
简单的笑蓝完成签到 ,获得积分10
5分钟前
6分钟前
Jenny发布了新的文献求助10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
YifanWang完成签到,获得积分10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999