Self-Supervised Graph Convolutional Network for Multi-View Clustering

计算机科学 聚类分析 聚类系数 人工智能 图形 相关聚类 特征学习 模式识别(心理学) 数据挖掘 机器学习 理论计算机科学
作者
Wei Xia,Qianqian Wang,Quanxue Gao,Xiangdong Zhang,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3182-3192 被引量:78
标识
DOI:10.1109/tmm.2021.3094296
摘要

Despite the promising preliminary results, existing graph convolutional network (GCN) based multi-view learning methods directly use the graph structure as view descriptor, which may inhibit the ability of multi-view learning for multimedia data. The major reason is that, in real multimedia applications, the graph structure may contain outliers. Moreover, they fail to take advantage of the information embedded in the inaccurate clustering labels obtained from their proposed methods, resulting in inferior clustering results. These observations motivate us to study whether there is a better alternative GCN based framework for multi-view clustering. To this end, in this paper, we propose an end-to-end self-supervised graph convolutional network for multi-view clustering (SGCMC). Specifically, SGCMC constructs a new view descriptor for graph-structured data by mapping the raw node content into the complex space via Euler transformation, which not only suppresses outliers but also reveals non-linear patterns embedded in data. Meanwhile, the proposed SGCMC uses the clustering labels to guide the learning of the latent representation and coefficient matrix, and the latter in turn is used to conduct the subsequent node clustering. By this way, clustering and representation learning are seamlessly connected, with the aim to achieve better clustering results. Extensive experiments indicate that the proposed SGCMC outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
WHsE完成签到 ,获得积分10
4秒前
时尚初南完成签到,获得积分10
6秒前
yjf发布了新的文献求助10
7秒前
yyy0820完成签到,获得积分10
7秒前
香蕉觅云应助淡然丹妗采纳,获得10
7秒前
cici妈发布了新的文献求助10
8秒前
夏姬宁静完成签到,获得积分10
9秒前
liiiii完成签到,获得积分10
11秒前
13秒前
丘比特应助未来可期采纳,获得10
13秒前
查丽发布了新的文献求助30
13秒前
16秒前
科研通AI2S应助yjihn采纳,获得10
16秒前
Axin给Axin的求助进行了留言
18秒前
淡然丹妗发布了新的文献求助10
19秒前
刻苦傲安完成签到,获得积分10
21秒前
Hiker完成签到,获得积分10
21秒前
南山鹤发布了新的文献求助10
22秒前
22秒前
22秒前
李佳欣发布了新的文献求助10
22秒前
22秒前
呼呼完成签到,获得积分20
26秒前
CDH发布了新的文献求助10
27秒前
27秒前
Ethan发布了新的文献求助10
29秒前
29秒前
雷雷完成签到,获得积分10
31秒前
小韩完成签到,获得积分10
31秒前
共产主义战士完成签到,获得积分10
31秒前
34秒前
35秒前
坦率的文龙完成签到,获得积分10
35秒前
小韩发布了新的文献求助10
37秒前
38秒前
39秒前
40秒前
sci_accept完成签到,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517