Self-Supervised Graph Convolutional Network for Multi-View Clustering

计算机科学 聚类分析 聚类系数 人工智能 图形 相关聚类 特征学习 模式识别(心理学) 数据挖掘 机器学习 理论计算机科学
作者
Wei Xia,Qianqian Wang,Quanxue Gao,Xiangdong Zhang,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3182-3192 被引量:97
标识
DOI:10.1109/tmm.2021.3094296
摘要

Despite the promising preliminary results, existing graph convolutional network (GCN) based multi-view learning methods directly use the graph structure as view descriptor, which may inhibit the ability of multi-view learning for multimedia data. The major reason is that, in real multimedia applications, the graph structure may contain outliers. Moreover, they fail to take advantage of the information embedded in the inaccurate clustering labels obtained from their proposed methods, resulting in inferior clustering results. These observations motivate us to study whether there is a better alternative GCN based framework for multi-view clustering. To this end, in this paper, we propose an end-to-end self-supervised graph convolutional network for multi-view clustering (SGCMC). Specifically, SGCMC constructs a new view descriptor for graph-structured data by mapping the raw node content into the complex space via Euler transformation, which not only suppresses outliers but also reveals non-linear patterns embedded in data. Meanwhile, the proposed SGCMC uses the clustering labels to guide the learning of the latent representation and coefficient matrix, and the latter in turn is used to conduct the subsequent node clustering. By this way, clustering and representation learning are seamlessly connected, with the aim to achieve better clustering results. Extensive experiments indicate that the proposed SGCMC outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
弼马温完成签到 ,获得积分10
刚刚
fcdawn完成签到,获得积分10
刚刚
刚刚
ss发布了新的文献求助30
刚刚
蛙蛙完成签到,获得积分0
1秒前
无可匹敌的饭量完成签到,获得积分10
1秒前
上官若男应助小潘采纳,获得10
1秒前
ding应助hlt采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
前前前世完成签到,获得积分10
3秒前
4秒前
弼马温关注了科研通微信公众号
4秒前
可爱迪发布了新的文献求助10
4秒前
健壮的化蛹应助顺心的骁采纳,获得10
5秒前
小满发布了新的文献求助10
5秒前
ss完成签到 ,获得积分10
5秒前
tt完成签到,获得积分10
6秒前
6秒前
6秒前
fish1998完成签到,获得积分10
6秒前
顾矜应助优雅尔芙采纳,获得10
6秒前
Mr祥发布了新的文献求助10
7秒前
爬不起来发布了新的文献求助10
7秒前
7秒前
8秒前
CCCC完成签到,获得积分20
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
meng发布了新的文献求助10
10秒前
英姑应助hlt采纳,获得10
10秒前
科研牛马人完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910