Self-Supervised Graph Convolutional Network for Multi-View Clustering

计算机科学 聚类分析 聚类系数 人工智能 图形 相关聚类 特征学习 模式识别(心理学) 数据挖掘 机器学习 理论计算机科学
作者
Wei Xia,Qianqian Wang,Quanxue Gao,Xiangdong Zhang,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3182-3192 被引量:97
标识
DOI:10.1109/tmm.2021.3094296
摘要

Despite the promising preliminary results, existing graph convolutional network (GCN) based multi-view learning methods directly use the graph structure as view descriptor, which may inhibit the ability of multi-view learning for multimedia data. The major reason is that, in real multimedia applications, the graph structure may contain outliers. Moreover, they fail to take advantage of the information embedded in the inaccurate clustering labels obtained from their proposed methods, resulting in inferior clustering results. These observations motivate us to study whether there is a better alternative GCN based framework for multi-view clustering. To this end, in this paper, we propose an end-to-end self-supervised graph convolutional network for multi-view clustering (SGCMC). Specifically, SGCMC constructs a new view descriptor for graph-structured data by mapping the raw node content into the complex space via Euler transformation, which not only suppresses outliers but also reveals non-linear patterns embedded in data. Meanwhile, the proposed SGCMC uses the clustering labels to guide the learning of the latent representation and coefficient matrix, and the latter in turn is used to conduct the subsequent node clustering. By this way, clustering and representation learning are seamlessly connected, with the aim to achieve better clustering results. Extensive experiments indicate that the proposed SGCMC outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美的香芦完成签到,获得积分10
刚刚
1秒前
隐形曼青应助cya采纳,获得10
1秒前
wanci应助滴答采纳,获得10
1秒前
ppp关闭了ppp文献求助
2秒前
闫永洁完成签到,获得积分10
2秒前
TianFuAI发布了新的文献求助10
3秒前
风中忆秋发布了新的文献求助10
3秒前
帅气的宽完成签到 ,获得积分10
3秒前
肖不错完成签到 ,获得积分10
4秒前
炙热百川发布了新的文献求助10
4秒前
4秒前
4秒前
明明明完成签到,获得积分10
5秒前
贪玩的机器猫完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
赘婿应助淡然的香薇采纳,获得20
7秒前
鳄鱼队长完成签到,获得积分10
8秒前
微笑的凌旋完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
科研狗完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
今后应助hq采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
sqqq卿发布了新的文献求助10
12秒前
姚姚完成签到,获得积分10
12秒前
13秒前
年轻的冰淇淋完成签到,获得积分10
13秒前
典雅以南发布了新的文献求助10
13秒前
sdkumamon完成签到 ,获得积分10
14秒前
星辉的斑斓完成签到 ,获得积分10
14秒前
cg666发布了新的文献求助10
15秒前
万能图书馆应助风中忆秋采纳,获得10
15秒前
RianaSun发布了新的文献求助10
16秒前
JamesPei应助kelly9110采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425