Self-Supervised Graph Convolutional Network for Multi-View Clustering

计算机科学 聚类分析 聚类系数 人工智能 图形 相关聚类 特征学习 模式识别(心理学) 数据挖掘 机器学习 理论计算机科学
作者
Wei Xia,Qianqian Wang,Quanxue Gao,Xiangdong Zhang,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3182-3192 被引量:97
标识
DOI:10.1109/tmm.2021.3094296
摘要

Despite the promising preliminary results, existing graph convolutional network (GCN) based multi-view learning methods directly use the graph structure as view descriptor, which may inhibit the ability of multi-view learning for multimedia data. The major reason is that, in real multimedia applications, the graph structure may contain outliers. Moreover, they fail to take advantage of the information embedded in the inaccurate clustering labels obtained from their proposed methods, resulting in inferior clustering results. These observations motivate us to study whether there is a better alternative GCN based framework for multi-view clustering. To this end, in this paper, we propose an end-to-end self-supervised graph convolutional network for multi-view clustering (SGCMC). Specifically, SGCMC constructs a new view descriptor for graph-structured data by mapping the raw node content into the complex space via Euler transformation, which not only suppresses outliers but also reveals non-linear patterns embedded in data. Meanwhile, the proposed SGCMC uses the clustering labels to guide the learning of the latent representation and coefficient matrix, and the latter in turn is used to conduct the subsequent node clustering. By this way, clustering and representation learning are seamlessly connected, with the aim to achieve better clustering results. Extensive experiments indicate that the proposed SGCMC outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kydd完成签到,获得积分10
刚刚
情怀应助肖望采纳,获得10
刚刚
沟通亿心发布了新的文献求助10
刚刚
Hello应助舒服的尔丝采纳,获得10
1秒前
小劳完成签到,获得积分10
1秒前
儒雅的过客完成签到,获得积分10
2秒前
仲夏完成签到,获得积分10
2秒前
拿捏陕科大完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
大壮完成签到,获得积分10
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
ZhaohuaXie应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
NameCYQ完成签到,获得积分10
4秒前
深情安青应助111采纳,获得10
4秒前
Thien应助科研通管家采纳,获得20
4秒前
英俊的铭应助科研通管家采纳,获得20
4秒前
彭于晏应助科研通管家采纳,获得30
4秒前
风清扬应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
zzl发布了新的文献求助10
4秒前
5秒前
菜鸡完成签到,获得积分10
5秒前
5秒前
Kelly完成签到,获得积分10
5秒前
星辰大海应助佳佳爱学习采纳,获得10
5秒前
胡辣椒麻鸡完成签到,获得积分10
5秒前
5秒前
李爱国应助高调的摆酒人采纳,获得10
6秒前
6秒前
可口可乐完成签到,获得积分10
6秒前
Zzzz完成签到,获得积分10
6秒前
shenya0810应助livra1058采纳,获得10
6秒前
粉嘟嘟loved完成签到,获得积分10
6秒前
杨杨完成签到,获得积分10
7秒前
无敌OUT曼完成签到,获得积分10
7秒前
奶瓶守护者完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632