MixStyle Neural Networks for Domain Generalization and Adaptation

一般化 计算机科学 特征(语言学) 人工智能 机器学习 领域(数学分析) 强化学习 人工神经网络 多样性(控制论) 适应(眼睛) 模式识别(心理学) 数学 光学 物理 数学分析 哲学 语言学
作者
Kaiyang Zhou,Yongxin Yang,Yu Qiao,Tao Xiang
出处
期刊:Cornell University - arXiv 被引量:9
标识
DOI:10.48550/arxiv.2107.02053
摘要

Neural networks do not generalize well to unseen data with domain shifts -- a longstanding problem in machine learning and AI. To overcome the problem, we propose MixStyle, a simple plug-and-play, parameter-free module that can improve domain generalization performance without the need to collect more data or increase model capacity. The design of MixStyle is simple: it mixes the feature statistics of two random instances in a single forward pass during training. The idea is grounded by the finding from recent style transfer research that feature statistics capture image style information, which essentially defines visual domains. Therefore, mixing feature statistics can be seen as an efficient way to synthesize new domains in the feature space, thus achieving data augmentation. MixStyle is easy to implement with a few lines of code, does not require modification to training objectives, and can fit a variety of learning paradigms including supervised domain generalization, semi-supervised domain generalization, and unsupervised domain adaptation. Our experiments show that MixStyle can significantly boost out-of-distribution generalization performance across a wide range of tasks including image recognition, instance retrieval and reinforcement learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
陶一二完成签到,获得积分10
1秒前
MM完成签到,获得积分10
2秒前
Who1990完成签到,获得积分10
3秒前
李友健完成签到 ,获得积分10
4秒前
hhhhh完成签到 ,获得积分10
6秒前
可耐的乘风完成签到,获得积分10
8秒前
wangnn发布了新的文献求助20
8秒前
大橙子发布了新的文献求助10
9秒前
9秒前
9秒前
余慵慵完成签到 ,获得积分10
10秒前
奋斗的小土豆完成签到,获得积分10
11秒前
ZJJ静完成签到,获得积分10
11秒前
邢大宝完成签到,获得积分10
12秒前
尔玉完成签到 ,获得积分10
14秒前
memo完成签到,获得积分10
14秒前
14秒前
一路芬芳完成签到,获得积分20
14秒前
16秒前
一一一应助songvv采纳,获得10
16秒前
16秒前
SciKid524完成签到 ,获得积分10
18秒前
科研通AI2S应助hhh采纳,获得10
18秒前
QWE完成签到,获得积分10
18秒前
赛赛完成签到 ,获得积分10
20秒前
tinydog完成签到,获得积分10
22秒前
长情琦完成签到,获得积分10
22秒前
Mercury完成签到 ,获得积分10
24秒前
zx完成签到 ,获得积分10
25秒前
Dearjw1655完成签到,获得积分10
26秒前
123完成签到 ,获得积分10
26秒前
圆圆完成签到 ,获得积分10
27秒前
31秒前
哭泣笑柳发布了新的文献求助10
32秒前
张宁波完成签到,获得积分10
32秒前
OeO完成签到 ,获得积分10
32秒前
macboy完成签到,获得积分10
34秒前
biubiu完成签到,获得积分10
35秒前
咸鱼之王完成签到,获得积分10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022