高光谱成像
模式识别(心理学)
光谱聚类
聚类分析
图形
人工智能
计算机科学
主成分分析
分割
数学
理论计算机科学
作者
Chang Tang,Xinwang Liu,En Zhu,Lizhe Wang,Albert Y. Zomaya
标识
DOI:10.24963/ijcai.2021/418
摘要
In this paper, we propose a hyperspectral band selection method via spatial-spectral weighted region-wise multiple graph fusion-based spectral clustering, referred to as RMGF briefly. Considering that different objects have different reflection characteristics, we use a superpixel segmentation algorithm to segment the first principal component of original hyperspectral image cube into homogeneous regions. For each superpixel, we construct a corresponding similarity graph to reflect the similarity between band pairs. Then, a multiple graph diffusion strategy with theoretical convergence guarantee is designed to learn a unified graph for partitioning the whole hyperspectral cube into several subcubes via spectral clustering. During the graph diffusion process, the spatial and spectral information of each superpixel are embedded to make spatial/spectral similar superpixels contribute more to each other. Finally, the band containing minimum noise in each subcube is selected to represent the whole subcube. Extensive experiments are conducted on three public datasets to validate the superiority of the proposed method when compared with other state-of-the-art ones.
科研通智能强力驱动
Strongly Powered by AbleSci AI