亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging

微塑料 拉曼光谱 鉴定(生物学) 人工智能 可视化 计算机科学 基质(化学分析) 计算生物学 环境科学 化学 光学 物理 生态学 环境化学 色谱法 生物
作者
Cheng Fang,Yunlong Luo,Xian Zhang,Hongping Zhang,Annette L. Nolan,Ravi Naidu
出处
期刊:Chemosphere [Elsevier]
卷期号:286: 131736-131736 被引量:82
标识
DOI:10.1016/j.chemosphere.2021.131736
摘要

To visualise microplastics and nanoplastics via Raman imaging, we need to scan the sample surface over a pixel array to collect Raman spectra as a matrix. The challenge is how to decode this spectrum matrix to map accurate and meaningful Raman images. This study compares two decoding approaches. The first approach is used when the sample contains several known types of microplastics whose standard spectra are available. We can map the Raman intensity at selected characteristic peaks as images. In order to increase the image certainty, we employ a logic-based algorithm to merge several images that are simultaneously mapped at several characteristic peaks to one image. However, the rest of the signals other than the selected peaks are ignored, meaning a low signal-noise ratio. The second approach for decoding is used when samples are complicated and standard spectra are not available. We employ principal component analysis (PCA) to decode the spectrum matrix. By selecting principal components (PC) and generating PC score curves to mimic the Raman spectrum, we can justify and assign the suspected items to microplastics and other materials. By mapping the PC loadings as images, microplastics and other materials can be simultaneously visualised. We analyse a sample containing two known microplastics to validate the effectiveness of the PCA-based algorithm. We then apply this method to analyse “unknown” microplastics printed on paper to extract Raman spectra from the complicated background and individually assign the images to paper fabric/additive, black carbon and microplastics, etc. Overall, the PCA-based algorithm shows some advantages and suggests a further step to decode Raman spectrum matrices towards machine learning. • Raman imaging enables the direct visualisation and identification of microplastics. • Logic-based and PCA-based algorithm are compared to map image. • Logic-based algorithm can merge several images mapped at different characteristic peaks into one to increase the signal-noise ratio. • PCA-based algorithm can decode the Raman spectrum matrix in the absence of the standard Raman spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷楷霖发布了新的文献求助10
1秒前
852应助小圭采纳,获得30
15秒前
幽默的书本完成签到 ,获得积分10
22秒前
llyyzzl应助嗒嗒小医生采纳,获得20
24秒前
水牛完成签到,获得积分10
28秒前
29秒前
张帅奔完成签到,获得积分10
29秒前
彭于晏应助Potato采纳,获得10
31秒前
小圭发布了新的文献求助30
33秒前
34秒前
李健应助Ahan采纳,获得10
35秒前
端庄千青发布了新的文献求助10
35秒前
syalonyui完成签到,获得积分10
35秒前
35秒前
饭团不吃鱼完成签到,获得积分10
35秒前
nazhang发布了新的文献求助10
40秒前
李爱国应助端庄千青采纳,获得10
41秒前
赘婿应助无奈母鸡采纳,获得10
46秒前
科研通AI6应助殷楷霖采纳,获得10
47秒前
天天快乐应助nazhang采纳,获得10
58秒前
58秒前
木齐Jay完成签到,获得积分10
59秒前
殷楷霖发布了新的文献求助10
1分钟前
汉堡包应助吱吱吱吱采纳,获得10
1分钟前
lyfsci完成签到,获得积分10
1分钟前
高挑的白旋风完成签到,获得积分10
1分钟前
鲤鱼笑南完成签到,获得积分10
1分钟前
Green完成签到,获得积分10
1分钟前
6666完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
冷酷哈密瓜完成签到,获得积分10
1分钟前
科研帽发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644480
求助须知:如何正确求助?哪些是违规求助? 4764238
关于积分的说明 15025149
捐赠科研通 4802869
什么是DOI,文献DOI怎么找? 2567659
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484792