Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging

微塑料 拉曼光谱 鉴定(生物学) 人工智能 可视化 计算机科学 基质(化学分析) 计算生物学 环境科学 化学 光学 物理 生态学 环境化学 色谱法 生物
作者
Cheng Fang,Yunlong Luo,Xian Zhang,Hongping Zhang,Annette L. Nolan,Ravi Naidu
出处
期刊:Chemosphere [Elsevier BV]
卷期号:286: 131736-131736 被引量:74
标识
DOI:10.1016/j.chemosphere.2021.131736
摘要

To visualise microplastics and nanoplastics via Raman imaging, we need to scan the sample surface over a pixel array to collect Raman spectra as a matrix. The challenge is how to decode this spectrum matrix to map accurate and meaningful Raman images. This study compares two decoding approaches. The first approach is used when the sample contains several known types of microplastics whose standard spectra are available. We can map the Raman intensity at selected characteristic peaks as images. In order to increase the image certainty, we employ a logic-based algorithm to merge several images that are simultaneously mapped at several characteristic peaks to one image. However, the rest of the signals other than the selected peaks are ignored, meaning a low signal-noise ratio. The second approach for decoding is used when samples are complicated and standard spectra are not available. We employ principal component analysis (PCA) to decode the spectrum matrix. By selecting principal components (PC) and generating PC score curves to mimic the Raman spectrum, we can justify and assign the suspected items to microplastics and other materials. By mapping the PC loadings as images, microplastics and other materials can be simultaneously visualised. We analyse a sample containing two known microplastics to validate the effectiveness of the PCA-based algorithm. We then apply this method to analyse “unknown” microplastics printed on paper to extract Raman spectra from the complicated background and individually assign the images to paper fabric/additive, black carbon and microplastics, etc. Overall, the PCA-based algorithm shows some advantages and suggests a further step to decode Raman spectrum matrices towards machine learning. • Raman imaging enables the direct visualisation and identification of microplastics. • Logic-based and PCA-based algorithm are compared to map image. • Logic-based algorithm can merge several images mapped at different characteristic peaks into one to increase the signal-noise ratio. • PCA-based algorithm can decode the Raman spectrum matrix in the absence of the standard Raman spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文莺发布了新的文献求助50
刚刚
飘逸问薇完成签到 ,获得积分10
1秒前
1秒前
neil完成签到,获得积分10
1秒前
samtol完成签到,获得积分10
2秒前
唐春明完成签到,获得积分10
2秒前
2秒前
手打鱼丸完成签到 ,获得积分10
2秒前
guoyunlong完成签到,获得积分10
2秒前
Qinqinasm完成签到,获得积分10
3秒前
淡淡的语柳完成签到 ,获得积分10
3秒前
4秒前
乐观道之完成签到,获得积分10
4秒前
科奇应助糖霜烤面包采纳,获得20
4秒前
坦率的匪完成签到,获得积分10
4秒前
5秒前
等风等你完成签到,获得积分10
6秒前
认真的觅松完成签到 ,获得积分10
6秒前
整齐冬瓜完成签到,获得积分10
6秒前
李大白完成签到 ,获得积分10
6秒前
song_song完成签到,获得积分10
7秒前
星辰大海应助Ni采纳,获得10
7秒前
清清甜应助熊毅峰采纳,获得10
8秒前
高山我梦完成签到,获得积分10
9秒前
10秒前
dogsday完成签到,获得积分10
10秒前
poyo完成签到,获得积分10
10秒前
跳跃雨泽完成签到,获得积分10
10秒前
北海qy完成签到,获得积分10
10秒前
xx完成签到,获得积分10
10秒前
Joanna完成签到,获得积分10
11秒前
hhh完成签到,获得积分10
11秒前
刻苦樱完成签到 ,获得积分10
11秒前
婷婷完成签到,获得积分10
11秒前
11秒前
12秒前
LL发布了新的文献求助10
12秒前
茄子完成签到,获得积分10
12秒前
尧九完成签到,获得积分10
13秒前
Cuisine完成签到 ,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044