亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging

微塑料 拉曼光谱 鉴定(生物学) 人工智能 可视化 计算机科学 基质(化学分析) 计算生物学 环境科学 化学 光学 物理 生态学 环境化学 色谱法 生物
作者
Cheng Fang,Yunlong Luo,Xian Zhang,Hongping Zhang,Annette L. Nolan,Ravi Naidu
出处
期刊:Chemosphere [Elsevier BV]
卷期号:286: 131736-131736 被引量:82
标识
DOI:10.1016/j.chemosphere.2021.131736
摘要

To visualise microplastics and nanoplastics via Raman imaging, we need to scan the sample surface over a pixel array to collect Raman spectra as a matrix. The challenge is how to decode this spectrum matrix to map accurate and meaningful Raman images. This study compares two decoding approaches. The first approach is used when the sample contains several known types of microplastics whose standard spectra are available. We can map the Raman intensity at selected characteristic peaks as images. In order to increase the image certainty, we employ a logic-based algorithm to merge several images that are simultaneously mapped at several characteristic peaks to one image. However, the rest of the signals other than the selected peaks are ignored, meaning a low signal-noise ratio. The second approach for decoding is used when samples are complicated and standard spectra are not available. We employ principal component analysis (PCA) to decode the spectrum matrix. By selecting principal components (PC) and generating PC score curves to mimic the Raman spectrum, we can justify and assign the suspected items to microplastics and other materials. By mapping the PC loadings as images, microplastics and other materials can be simultaneously visualised. We analyse a sample containing two known microplastics to validate the effectiveness of the PCA-based algorithm. We then apply this method to analyse “unknown” microplastics printed on paper to extract Raman spectra from the complicated background and individually assign the images to paper fabric/additive, black carbon and microplastics, etc. Overall, the PCA-based algorithm shows some advantages and suggests a further step to decode Raman spectrum matrices towards machine learning. • Raman imaging enables the direct visualisation and identification of microplastics. • Logic-based and PCA-based algorithm are compared to map image. • Logic-based algorithm can merge several images mapped at different characteristic peaks into one to increase the signal-noise ratio. • PCA-based algorithm can decode the Raman spectrum matrix in the absence of the standard Raman spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马良发布了新的文献求助10
1秒前
平淡的雁桃完成签到,获得积分10
5秒前
6秒前
10秒前
科研通AI5应助SarahG采纳,获得30
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
周同学发布了新的文献求助10
1分钟前
1分钟前
P_Chem完成签到,获得积分10
1分钟前
周同学发布了新的文献求助10
2分钟前
2分钟前
wenbo完成签到,获得积分0
2分钟前
Mercury完成签到,获得积分10
2分钟前
SarahG发布了新的文献求助30
2分钟前
SarahG完成签到,获得积分10
2分钟前
老石完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
周同学完成签到,获得积分20
3分钟前
千里草完成签到,获得积分10
3分钟前
周同学关注了科研通微信公众号
4分钟前
4分钟前
tenta发布了新的文献求助200
5分钟前
赘婿应助feifeiaym采纳,获得20
5分钟前
乐正亦寒完成签到 ,获得积分10
5分钟前
无情迎蕾完成签到,获得积分10
6分钟前
6分钟前
结实初柳完成签到,获得积分10
6分钟前
tenta完成签到,获得积分10
6分钟前
feifeiaym发布了新的文献求助20
6分钟前
feifeiaym完成签到 ,获得积分10
7分钟前
tutu完成签到,获得积分10
7分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
李金文应助小坏蛋蛋蛋蛋采纳,获得10
8分钟前
英俊的铭应助jane123采纳,获得10
8分钟前
Hillson完成签到,获得积分10
8分钟前
Mark_He发布了新的文献求助10
8分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582250
求助须知:如何正确求助?哪些是违规求助? 4000012
关于积分的说明 12382029
捐赠科研通 3674909
什么是DOI,文献DOI怎么找? 2025436
邀请新用户注册赠送积分活动 1059193
科研通“疑难数据库(出版商)”最低求助积分说明 945843