已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging

微塑料 拉曼光谱 鉴定(生物学) 人工智能 可视化 计算机科学 基质(化学分析) 计算生物学 环境科学 化学 光学 物理 生态学 环境化学 色谱法 生物
作者
Cheng Fang,Yunlong Luo,Xian Zhang,Hongping Zhang,Annette L. Nolan,Ravi Naidu
出处
期刊:Chemosphere [Elsevier]
卷期号:286: 131736-131736 被引量:82
标识
DOI:10.1016/j.chemosphere.2021.131736
摘要

To visualise microplastics and nanoplastics via Raman imaging, we need to scan the sample surface over a pixel array to collect Raman spectra as a matrix. The challenge is how to decode this spectrum matrix to map accurate and meaningful Raman images. This study compares two decoding approaches. The first approach is used when the sample contains several known types of microplastics whose standard spectra are available. We can map the Raman intensity at selected characteristic peaks as images. In order to increase the image certainty, we employ a logic-based algorithm to merge several images that are simultaneously mapped at several characteristic peaks to one image. However, the rest of the signals other than the selected peaks are ignored, meaning a low signal-noise ratio. The second approach for decoding is used when samples are complicated and standard spectra are not available. We employ principal component analysis (PCA) to decode the spectrum matrix. By selecting principal components (PC) and generating PC score curves to mimic the Raman spectrum, we can justify and assign the suspected items to microplastics and other materials. By mapping the PC loadings as images, microplastics and other materials can be simultaneously visualised. We analyse a sample containing two known microplastics to validate the effectiveness of the PCA-based algorithm. We then apply this method to analyse “unknown” microplastics printed on paper to extract Raman spectra from the complicated background and individually assign the images to paper fabric/additive, black carbon and microplastics, etc. Overall, the PCA-based algorithm shows some advantages and suggests a further step to decode Raman spectrum matrices towards machine learning. • Raman imaging enables the direct visualisation and identification of microplastics. • Logic-based and PCA-based algorithm are compared to map image. • Logic-based algorithm can merge several images mapped at different characteristic peaks into one to increase the signal-noise ratio. • PCA-based algorithm can decode the Raman spectrum matrix in the absence of the standard Raman spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emma完成签到,获得积分10
刚刚
palmer发布了新的文献求助10
刚刚
tzl发布了新的文献求助30
3秒前
zyj完成签到,获得积分10
4秒前
小马甲应助权翼采纳,获得10
5秒前
LJY完成签到 ,获得积分10
6秒前
11秒前
岚岚完成签到,获得积分10
11秒前
了了完成签到 ,获得积分10
12秒前
12秒前
权翼发布了新的文献求助10
17秒前
HYQ完成签到 ,获得积分10
17秒前
福斯卡完成签到 ,获得积分10
17秒前
青柠完成签到 ,获得积分10
18秒前
20秒前
思源应助linsen采纳,获得10
21秒前
22秒前
李健的小迷弟应助xxwyj采纳,获得10
23秒前
tzl完成签到,获得积分10
23秒前
23秒前
25秒前
26秒前
dongyi发布了新的文献求助200
29秒前
深情安青应助知弈否采纳,获得10
32秒前
JD完成签到 ,获得积分10
32秒前
浮游应助LJY采纳,获得10
34秒前
tanrui发布了新的文献求助20
35秒前
35秒前
三岁完成签到 ,获得积分10
36秒前
汉堡包应助dongyi采纳,获得10
39秒前
怕黑山柏发布了新的文献求助10
40秒前
兜兜发布了新的文献求助30
40秒前
Hello应助tanrui采纳,获得10
44秒前
liuling完成签到,获得积分10
46秒前
rongrongrong完成签到,获得积分10
47秒前
小白果果完成签到,获得积分10
48秒前
49秒前
心灵美鑫完成签到 ,获得积分10
50秒前
51秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361