Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging

微塑料 拉曼光谱 鉴定(生物学) 人工智能 可视化 计算机科学 基质(化学分析) 计算生物学 环境科学 化学 光学 物理 生态学 环境化学 色谱法 生物
作者
Cheng Fang,Yunlong Luo,Xian Zhang,Hongping Zhang,Annette L. Nolan,Ravi Naidu
出处
期刊:Chemosphere [Elsevier BV]
卷期号:286: 131736-131736 被引量:82
标识
DOI:10.1016/j.chemosphere.2021.131736
摘要

To visualise microplastics and nanoplastics via Raman imaging, we need to scan the sample surface over a pixel array to collect Raman spectra as a matrix. The challenge is how to decode this spectrum matrix to map accurate and meaningful Raman images. This study compares two decoding approaches. The first approach is used when the sample contains several known types of microplastics whose standard spectra are available. We can map the Raman intensity at selected characteristic peaks as images. In order to increase the image certainty, we employ a logic-based algorithm to merge several images that are simultaneously mapped at several characteristic peaks to one image. However, the rest of the signals other than the selected peaks are ignored, meaning a low signal-noise ratio. The second approach for decoding is used when samples are complicated and standard spectra are not available. We employ principal component analysis (PCA) to decode the spectrum matrix. By selecting principal components (PC) and generating PC score curves to mimic the Raman spectrum, we can justify and assign the suspected items to microplastics and other materials. By mapping the PC loadings as images, microplastics and other materials can be simultaneously visualised. We analyse a sample containing two known microplastics to validate the effectiveness of the PCA-based algorithm. We then apply this method to analyse “unknown” microplastics printed on paper to extract Raman spectra from the complicated background and individually assign the images to paper fabric/additive, black carbon and microplastics, etc. Overall, the PCA-based algorithm shows some advantages and suggests a further step to decode Raman spectrum matrices towards machine learning. • Raman imaging enables the direct visualisation and identification of microplastics. • Logic-based and PCA-based algorithm are compared to map image. • Logic-based algorithm can merge several images mapped at different characteristic peaks into one to increase the signal-noise ratio. • PCA-based algorithm can decode the Raman spectrum matrix in the absence of the standard Raman spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SRY完成签到,获得积分10
刚刚
可爱的从寒完成签到,获得积分10
1秒前
1秒前
Hello应助burger采纳,获得10
1秒前
1111发布了新的文献求助20
2秒前
后夜完成签到,获得积分10
2秒前
橙熟完成签到,获得积分10
2秒前
2秒前
2秒前
浅眸流年完成签到,获得积分10
3秒前
缥缈的绿兰完成签到,获得积分10
3秒前
差点长成帅哥完成签到,获得积分10
4秒前
找呀找完成签到,获得积分10
4秒前
保奔发布了新的文献求助10
4秒前
4秒前
4秒前
1111完成签到,获得积分10
4秒前
QC完成签到,获得积分10
4秒前
楚明允完成签到 ,获得积分10
5秒前
SciGPT应助bobo采纳,获得10
5秒前
5秒前
完美世界应助ccccd采纳,获得10
5秒前
6秒前
xiaoxiao完成签到,获得积分10
7秒前
SRY发布了新的文献求助10
7秒前
迷了路的猫完成签到,获得积分10
8秒前
烟花应助胡立杰采纳,获得10
8秒前
琂当归完成签到,获得积分10
8秒前
小药丸包饺子应助Oil采纳,获得10
9秒前
刘硕发布了新的文献求助10
9秒前
10秒前
种太阳完成签到 ,获得积分10
10秒前
10秒前
浪子发布了新的文献求助20
10秒前
帅气的机器猫完成签到,获得积分10
10秒前
怕黑的班完成签到,获得积分10
11秒前
蜡笔小新新完成签到,获得积分10
11秒前
12秒前
ykiiii完成签到,获得积分10
14秒前
忙碌的数学人完成签到,获得积分10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167