已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging

微塑料 拉曼光谱 鉴定(生物学) 人工智能 可视化 计算机科学 基质(化学分析) 计算生物学 环境科学 化学 光学 物理 生态学 环境化学 色谱法 生物
作者
Cheng Fang,Yunlong Luo,Xian Zhang,Hongping Zhang,Annette L. Nolan,Ravi Naidu
出处
期刊:Chemosphere [Elsevier]
卷期号:286: 131736-131736 被引量:74
标识
DOI:10.1016/j.chemosphere.2021.131736
摘要

To visualise microplastics and nanoplastics via Raman imaging, we need to scan the sample surface over a pixel array to collect Raman spectra as a matrix. The challenge is how to decode this spectrum matrix to map accurate and meaningful Raman images. This study compares two decoding approaches. The first approach is used when the sample contains several known types of microplastics whose standard spectra are available. We can map the Raman intensity at selected characteristic peaks as images. In order to increase the image certainty, we employ a logic-based algorithm to merge several images that are simultaneously mapped at several characteristic peaks to one image. However, the rest of the signals other than the selected peaks are ignored, meaning a low signal-noise ratio. The second approach for decoding is used when samples are complicated and standard spectra are not available. We employ principal component analysis (PCA) to decode the spectrum matrix. By selecting principal components (PC) and generating PC score curves to mimic the Raman spectrum, we can justify and assign the suspected items to microplastics and other materials. By mapping the PC loadings as images, microplastics and other materials can be simultaneously visualised. We analyse a sample containing two known microplastics to validate the effectiveness of the PCA-based algorithm. We then apply this method to analyse “unknown” microplastics printed on paper to extract Raman spectra from the complicated background and individually assign the images to paper fabric/additive, black carbon and microplastics, etc. Overall, the PCA-based algorithm shows some advantages and suggests a further step to decode Raman spectrum matrices towards machine learning. • Raman imaging enables the direct visualisation and identification of microplastics. • Logic-based and PCA-based algorithm are compared to map image. • Logic-based algorithm can merge several images mapped at different characteristic peaks into one to increase the signal-noise ratio. • PCA-based algorithm can decode the Raman spectrum matrix in the absence of the standard Raman spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏小福发布了新的文献求助30
刚刚
1秒前
wwf完成签到,获得积分10
1秒前
奶油冰淇淋完成签到 ,获得积分10
3秒前
明理的风华完成签到 ,获得积分10
5秒前
今后应助小星云采纳,获得10
5秒前
西瓜汁完成签到,获得积分10
7秒前
逍遥小书生完成签到 ,获得积分10
7秒前
8秒前
8秒前
迟大猫应助曦小蕊采纳,获得10
9秒前
hey发布了新的文献求助10
9秒前
格--完成签到,获得积分10
10秒前
爱读文献完成签到 ,获得积分10
11秒前
善学以致用应助Bao_o_o采纳,获得10
12秒前
16秒前
GD完成签到,获得积分10
17秒前
草上飞完成签到 ,获得积分10
17秒前
小洲王先生完成签到,获得积分10
17秒前
19秒前
江小小发布了新的文献求助10
20秒前
隐形曼青应助szy采纳,获得10
21秒前
小小怪完成签到 ,获得积分10
22秒前
22秒前
无聊的如凡关注了科研通微信公众号
24秒前
25秒前
wangxiaobin完成签到 ,获得积分10
25秒前
领导范儿应助小巧的满天采纳,获得50
28秒前
阿紫吖完成签到,获得积分10
29秒前
任性雪糕发布了新的文献求助10
29秒前
郭嘉彬发布了新的文献求助10
30秒前
喋喋不休发布了新的文献求助30
33秒前
haimianbaobao完成签到 ,获得积分10
34秒前
深情安青应助健忘的寄瑶采纳,获得10
35秒前
你想读博吗完成签到,获得积分10
38秒前
38秒前
叉烧完成签到 ,获得积分10
39秒前
41秒前
樱桃猴子完成签到,获得积分10
42秒前
外向不愁发布了新的文献求助10
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538815
求助须知:如何正确求助?哪些是违规求助? 3116531
关于积分的说明 9325694
捐赠科研通 2814430
什么是DOI,文献DOI怎么找? 1546713
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712136