荧光
化学
吸光度
检出限
分析化学(期刊)
蒽
螯合作用
金属
化学计量学
质子核磁共振
选择性
核化学
光化学
无机化学
物理化学
色谱法
立体化学
有机化学
量子力学
物理
催化作用
作者
J. Jone Celestina,P. Tharmaraj,C.D. Sheela,J. Shakina
标识
DOI:10.1016/j.jlumin.2021.118359
摘要
A novel and highly selective fluorescent optical sensor developed from 9-anthracene carboxaldehyde and 2-amino 5-nitro benzophenone (BPAI) was designed and synthesized by ultrasonication for rapid Co2+ detection in ethanol medium by charge transfer and CHEF (Chelation Enhanced Fluorescence) mechanism. The stoichiometry of the complexation was calculated as 1:1 via Job's plot and confirmed by mass spectrum. The structure of both the ligand and the metal complex was confirmed by UV, FT-IR, NMR and mass spectral studies. The mechanism of sensing was observed through experimental calculations. Upon treatment of various metal cations such as Cu2+, Ni2+, Zn2+, Cr3+, Mg2+, Hg2+, Fe2+, Fe3+, Cd2+, Pb2+,Al3+, Pd2+, K+, Na+,As3+ no noticeable changes were observed in both absorbance and fluorescence spectral measurements except that of Co2+. The absorbance of BPAI + Co2+ exhibited two new peaks at 616 nm and 679 nm. The fluorescence response of BPAI at 580 nm was abruptly increased, accompanied by the colour change of the BPAI with Co2+ compared to BPAI. The color change from pale brown to yellow occurred due to the binding of Co2+ with that of BPAI thereby yielding a fluorescence-enhanced product. BPAI exhibited significant selectivity within short response time and strong charge transfer mechanism due to the chelation process. The detection limit was found to be 0.00091 μM which is much lower than the permissible limit recommended by WHO. Real sample analysis was performed for the practical applicability of BPAI in the environment. Furthermore, BPAI can be used as a colorimetric and fluorescent sensor to detect Co2+ in biological environments, demonstrating its low cytotoxicity using MTT assay by MG63 cells and L929 cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI