扩展卡尔曼滤波器
电池(电)
荷电状态
内阻
计算机科学
锂离子电池
控制理论(社会学)
循环神经网络
卡尔曼滤波器
锂电池
均方误差
人工神经网络
人工智能
功率(物理)
数学
统计
控制(管理)
化学
离子
物理
离子键合
有机化学
量子力学
作者
Ponukupati Ravi Teja,R Shanmughasundaram
标识
DOI:10.1109/mascon51689.2021.9563396
摘要
State of Charge (SoC) is an important parameter of a battery for its safety measures. The battery model consists of parameters like internal resistance and two RC stages. These parameters vary according to the internal temperature and SoC of the battery. So, it is necessary to know the characteristics of battery parameters with respect to SoC and internal temperature of the battery. In this paper, Extended Kalman Filter (EKF) is used to estimate the SoC for different temperatures under fixed and variable load conditions. To overcome the limitations of EKF, the data driven model, Recurrent Neural Network (RNN) based Long Short Term Memory (LSTM) model is adopted to estimate the SoC. It is observed from the simulation results that the performance of LSTM model is better than the EKF in terms of RMSE value.
科研通智能强力驱动
Strongly Powered by AbleSci AI