材料科学
弹性体
可伸缩电子设备
复合材料
电介质
柔性电子器件
纳米技术
光电子学
数码产品
电气工程
工程类
作者
Sanchuan Zhao,Haiyang Liu,Lei Cui,Yu Kang,Gang Bian,Jun Yin,Jae‐Chul Yu,Young‐Wook Chang,Jian Zhu
标识
DOI:10.1002/adma.202104761
摘要
Elastomeric dielectrics are crucial for reliably governing the carrier densities in semiconducting channels during deformation in soft/stretchable field-effect transistors (FETs). Uncontrolled stacking of polymeric chains renders elastomeric dielectrics poorly insulated at nanoscale thicknesses, thereby thick films are usually required, leading to high voltage or power consumption for on/off operations of FETs. Here, layer-by-layer assembly is exploited to build 15-nm-thick elastomeric nanodielectrics through alternative adsorption of oppositely charged polyurethanes (PUs) for soft and hysteresis-free FETs. After mild thermal annealing to heal pinholes, such PU multilayers offer high areal capacitances of 237 nF cm-2 and low leakage current densities of 3.2 × 10-8 A cm-2 at 2 V. Owing to the intrinsic ductility of the elastomeric PUs, the nanofilms possess excellent dielectric properties at a strain of 5% or a bending radius of 1.5 mm, while the wrinkled counterparts show mechanical stability with negligible changes of leakage currents after repeated stretching to a strain of 50%. Besides, these nanodielectrics are immune to high humidity and conserve their properties when immersed into water, despite their assembly occurs aqueously. Furthermore, the PU dielectrics are implemented in carbon nanotube FETs, demonstrating low-voltage operations (< 1.5 V) and negligible hysteresis without any encapsulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI