A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse

数学优化 随机规划 计算机科学 分段 稳健性(进化) 稳健优化 可扩展性 软件 马尔可夫决策过程 二次规划 半定规划 二次方程 最优化问题 随机优化 数学 马尔可夫过程 数学分析 生物化学 化学 统计 几何学 数据库 基因 程序设计语言
作者
Xiangyi Fan,Grani A. Hanasusanto
出处
期刊:Informs Journal on Computing 卷期号:36 (2): 526-542 被引量:4
标识
DOI:10.1287/ijoc.2021.0306
摘要

We study two-stage stochastic optimization problems with random recourse, where the coefficients of the adaptive decisions involve uncertain parameters. To deal with the infinite-dimensional recourse decisions, we propose a scalable approximation scheme via piecewise linear and piecewise quadratic decision rules. We develop a data-driven distributionally robust framework with two layers of robustness to address distributional uncertainty. We also establish out-of-sample performance guarantees for the proposed scheme. Applying known ideas, the resulting optimization problem can be reformulated as an exact copositive program that admits semidefinite programming approximations. We design an iterative decomposition algorithm, which converges under some regularity conditions, to reduce the runtime needed to solve this program. Through numerical examples for various known operations management applications, we demonstrate that our method produces significantly better solutions than the traditional sample-average approximation scheme especially when the data are limited. For the problem instances for which only the recourse cost coefficients are random, our method exhibits slightly inferior out-of-sample performance but shorter runtimes compared with a competing approach. History: Accepted by Nicola Secomandi, Area Editor for Stochastic Models & Reinforcement Learning. Funding: This work was supported by the National Science Foundation [Grants 2342505 and 2343869]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0306 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0306 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xtz发布了新的文献求助30
刚刚
慕青应助白华苍松采纳,获得10
刚刚
大模型应助kong采纳,获得10
刚刚
当下最好发布了新的文献求助10
刚刚
斯文败类应助HSDSD采纳,获得10
1秒前
慕青应助爱学习的小张采纳,获得10
1秒前
情怀应助高xy采纳,获得10
1秒前
2秒前
画凌烟完成签到,获得积分20
2秒前
丘比特应助吕凯迪采纳,获得10
3秒前
FFGC发布了新的文献求助10
3秒前
慕青应助蘇尼Ai采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
zhou完成签到,获得积分10
6秒前
6秒前
huohua完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
乔治完成签到 ,获得积分10
7秒前
不想看文献完成签到,获得积分10
7秒前
7秒前
枫叶冰域完成签到,获得积分10
9秒前
9秒前
雪白丸子完成签到,获得积分10
9秒前
li关注了科研通微信公众号
9秒前
恰你完成签到,获得积分10
9秒前
四夕完成签到 ,获得积分10
10秒前
10秒前
yaoyinlin发布了新的文献求助10
10秒前
JLHN发布了新的文献求助10
10秒前
10秒前
慕青应助chens627采纳,获得10
12秒前
枫叶冰域发布了新的文献求助10
12秒前
13秒前
小语丝发布了新的文献求助10
13秒前
李健应助南山无梅落采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027