Deep learning radiomics of dual-energy computed tomography for predicting lymph node metastases of pancreatic ductal adenocarcinoma

医学 胰腺导管腺癌 淋巴结 放射科 解剖(医学) 阶段(地层学) 队列 置信区间 无线电技术 多元分析 核医学 胰腺癌 内科学 癌症 生物 古生物学
作者
Chao An,Dongyang Li,Sheng Li,Wang‐Zhong Li,Tong Tong,Lizhi Liu,Dongping Jiang,Linling Jiang,Guangying Ruan,Ning Hai,Yan Fu,Kun Wang,Shuiqing Zhuo,Jie Tian
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (4): 1187-1199 被引量:43
标识
DOI:10.1007/s00259-021-05573-z
摘要

Diagnosis of lymph node metastasis (LNM) is critical for patients with pancreatic ductal adenocarcinoma (PDAC). We aimed to build deep learning radiomics (DLR) models of dual-energy computed tomography (DECT) to classify LNM status of PDAC and to stratify the overall survival before treatment. From August 2016 to October 2020, 148 PDAC patients underwent regional lymph node dissection and scanned preoperatively DECT were enrolled. The virtual monoenergetic image at 40 keV was reconstructed from 100 and 150 keV of DECT. By setting January 1, 2021, as the cut-off date, 113 patients were assigned into the primary set, and 35 were in the test set. DLR models using VMI 40 keV, 100 keV, 150 keV, and 100 + 150 keV images were developed and compared. The best model was integrated with key clinical features selected by multivariate Cox regression analysis to achieve the most accurate prediction. DLR based on 100 + 150 keV DECT yields the best performance in predicting LNM status with the AUC of 0.87 (95% confidence interval [CI]: 0.85–0.89) in the test cohort. After integrating key clinical features (CT-reported T stage, LN status, glutamyl transpeptadase, and glucose), the AUC was improved to 0.92 (95% CI: 0.91–0.94). Patients at high risk of LNM portended significantly worse overall survival than those at low risk after surgery (P = 0.012). The DLR model showed outstanding performance for predicting LNM in PADC and hold promise of improving clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
czb123发布了新的文献求助10
3秒前
CATH发布了新的文献求助10
4秒前
GD完成签到,获得积分10
4秒前
kk完成签到 ,获得积分10
5秒前
伶俐绿柏发布了新的文献求助10
6秒前
YS526完成签到,获得积分10
7秒前
贪玩灵松完成签到,获得积分10
8秒前
9秒前
10秒前
微笑亿先完成签到,获得积分10
13秒前
科目三应助烟雨江南采纳,获得10
14秒前
deng2025发布了新的文献求助10
14秒前
化学发布了新的文献求助10
14秒前
深情安青应助伶俐绿柏采纳,获得10
18秒前
风中白易完成签到,获得积分10
22秒前
梁liang完成签到 ,获得积分10
22秒前
清新的万天完成签到,获得积分10
26秒前
26秒前
丘比特应助deng2025采纳,获得10
27秒前
hhvjklvlb完成签到,获得积分20
28秒前
隐形曼青应助dsa采纳,获得10
28秒前
28秒前
29秒前
万能图书馆应助jake采纳,获得10
30秒前
核桃发布了新的文献求助10
31秒前
退堂鼓批发商完成签到 ,获得积分10
34秒前
科研新人3发布了新的文献求助10
34秒前
35秒前
Oracle应助雪梨101采纳,获得50
37秒前
体贴绝音完成签到 ,获得积分10
38秒前
完美世界应助YaHe采纳,获得10
38秒前
搬砖王完成签到,获得积分20
40秒前
40秒前
40秒前
爆米花应助jake采纳,获得10
41秒前
多情蓝发布了新的文献求助10
42秒前
42秒前
nihao完成签到 ,获得积分10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733238
求助须知:如何正确求助?哪些是违规求助? 3277380
关于积分的说明 10002340
捐赠科研通 2993231
什么是DOI,文献DOI怎么找? 1642568
邀请新用户注册赠送积分活动 780522
科研通“疑难数据库(出版商)”最低求助积分说明 748888