Deep learning radiomics of dual-energy computed tomography for predicting lymph node metastases of pancreatic ductal adenocarcinoma

医学 胰腺导管腺癌 淋巴结 放射科 解剖(医学) 阶段(地层学) 队列 置信区间 无线电技术 多元分析 核医学 胰腺癌 内科学 癌症 生物 古生物学
作者
Chao An,Dongyang Li,Sheng Li,Wang‐Zhong Li,Tong Tong,Lizhi Liu,Dongping Jiang,Linling Jiang,Guangying Ruan,Ning Hai,Yan Fu,Kun Wang,Shuiqing Zhuo,Jie Tian
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (4): 1187-1199 被引量:48
标识
DOI:10.1007/s00259-021-05573-z
摘要

Diagnosis of lymph node metastasis (LNM) is critical for patients with pancreatic ductal adenocarcinoma (PDAC). We aimed to build deep learning radiomics (DLR) models of dual-energy computed tomography (DECT) to classify LNM status of PDAC and to stratify the overall survival before treatment. From August 2016 to October 2020, 148 PDAC patients underwent regional lymph node dissection and scanned preoperatively DECT were enrolled. The virtual monoenergetic image at 40 keV was reconstructed from 100 and 150 keV of DECT. By setting January 1, 2021, as the cut-off date, 113 patients were assigned into the primary set, and 35 were in the test set. DLR models using VMI 40 keV, 100 keV, 150 keV, and 100 + 150 keV images were developed and compared. The best model was integrated with key clinical features selected by multivariate Cox regression analysis to achieve the most accurate prediction. DLR based on 100 + 150 keV DECT yields the best performance in predicting LNM status with the AUC of 0.87 (95% confidence interval [CI]: 0.85–0.89) in the test cohort. After integrating key clinical features (CT-reported T stage, LN status, glutamyl transpeptadase, and glucose), the AUC was improved to 0.92 (95% CI: 0.91–0.94). Patients at high risk of LNM portended significantly worse overall survival than those at low risk after surgery (P = 0.012). The DLR model showed outstanding performance for predicting LNM in PADC and hold promise of improving clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
花与爱发布了新的文献求助10
1秒前
koipolaris完成签到,获得积分10
1秒前
牛马完成签到,获得积分10
1秒前
3秒前
棋士应助谷粱紫槐采纳,获得10
3秒前
3秒前
3秒前
小兑发布了新的文献求助10
4秒前
ED应助小新爱蜡笔采纳,获得10
4秒前
所所应助summer采纳,获得10
4秒前
子车友绿发布了新的文献求助10
5秒前
haha发布了新的文献求助10
5秒前
5秒前
所所应助怡然的煜城采纳,获得10
6秒前
6秒前
6秒前
陈呱呱发布了新的文献求助10
6秒前
7秒前
好好发布了新的文献求助10
7秒前
CipherSage应助yuan采纳,获得10
8秒前
8秒前
成就映秋发布了新的文献求助10
9秒前
9秒前
10秒前
汉堡包应助你是我的唯一采纳,获得10
10秒前
逍遥发布了新的文献求助10
10秒前
张瑞彬完成签到,获得积分10
10秒前
热爱学习发布了新的文献求助10
11秒前
孤独梦安完成签到,获得积分10
11秒前
静听风吼关注了科研通微信公众号
12秒前
阿湫完成签到,获得积分10
13秒前
子车友绿完成签到,获得积分10
13秒前
13秒前
13秒前
harvey1989完成签到,获得积分10
13秒前
14秒前
鲈鱼发布了新的文献求助30
15秒前
谢琉圭完成签到,获得积分10
15秒前
zkexuan完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154