An intermolecular hydrogen-bond-induced quench-type Ru(dcbpy)32+/TPA electrochemiluminescence system by nitrogen-doped carbon quantum dots

电化学发光 光化学 化学 水溶液 分子间力 量子点 材料科学 猝灭(荧光) 检出限 纳米技术 分子 荧光 有机化学 催化作用 色谱法 量子力学 物理
作者
Xiaohong Liu,Libo Li,Lijun Luo,Xiaoya Bi,Wanlin Zhao,Hui Yan,Xia Li,Tianyan You
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:184: 113232-113232 被引量:22
标识
DOI:10.1016/j.bios.2021.113232
摘要

Here, we show that nitrogen-doped carbon quantum dots (NCQDs) strongly inhibits the anodic electrochemiluminescence (ECL) signal of a tris(4,4′-dicarboxylic acid-2,2′-bipyridyl) ruthenium(II) (Ru(dcbpy)32+)/tripropylamine (TPA) aqueous system. To determine the ECL-quenching mechanism, we used photoluminescence spectroscopy, UV–Visible absorption spectroscopy and dynamic simulation technology. Quenching of the ECL signal of Ru(dcbpy)32+/TPA by NCQDs was predominantly attributed to the interaction between Ru(dcbpy)32+ and NCQDs rather than that between TPA and NCQDs. Specifically, when Ru(dcbpy)32+ and NCQDs were in aqueous solution together, the carboxyl (-COOH) groups of Ru(dcbpy)32+ were in contact with oxygen- and nitrogen-containing groups on the surface of NCQDs and formed intermolecular hydrogen bonds. This process involved energy transfer from the excited-state Ru(dcbpy)32+ to the intermolecular hydrogen bonds, thus resulting in a decrease in the Ru(dcbpy)32+ ECL signal. On this basis, a quenching-type ECL sensor for the quantification of NCQDs was fabricated. The sensor had a wide linear range and an estimated detection limit of 0.0012 mg mL−1, as well as excellent stability and selectivity. Satisfactory recoveries of 97.0–99.5% were obtained using the ECL sensor to quantify NCQDs in tap water. NCQDs could potentially be used as a quenching probe of Ru(dcbpy)32+ to construct various biosensors with widespread applications in the sensing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔子很颓发布了新的文献求助10
刚刚
1秒前
lalala应助小艾冂学采纳,获得10
1秒前
粱自中发布了新的文献求助10
3秒前
子车茗应助LDM采纳,获得20
3秒前
琪冀完成签到,获得积分10
4秒前
Genius发布了新的文献求助10
4秒前
ashelya完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
深情安青应助莫菲采纳,获得10
6秒前
小唐完成签到,获得积分10
6秒前
6秒前
眯眯眼的衬衫应助3131879775采纳,获得10
6秒前
7秒前
7秒前
SciGPT应助云淡风轻一宝采纳,获得10
7秒前
我是老大应助hhh采纳,获得10
7秒前
乐乐应助cloud采纳,获得200
7秒前
7秒前
王权发布了新的文献求助10
8秒前
搜集达人应助研友_kngjrL采纳,获得10
8秒前
8秒前
9秒前
上官若男应助在下吴某采纳,获得10
10秒前
Sober完成签到 ,获得积分10
10秒前
丢丢银发布了新的文献求助10
10秒前
研友_ZGD9o8完成签到,获得积分10
10秒前
10秒前
粱自中完成签到,获得积分20
10秒前
10秒前
11秒前
David应助de采纳,获得10
11秒前
石沉大海发布了新的文献求助10
11秒前
谷捣猫宁发布了新的文献求助10
13秒前
喵酱完成签到,获得积分10
15秒前
15秒前
毛豆应助一拿采纳,获得10
16秒前
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481670
求助须知:如何正确求助?哪些是违规求助? 3071801
关于积分的说明 9123736
捐赠科研通 2763459
什么是DOI,文献DOI怎么找? 1516547
邀请新用户注册赠送积分活动 701593
科研通“疑难数据库(出版商)”最低求助积分说明 700453