Machine learning based analysis of speech dimensions in functional oropharyngeal dysphagia

口咽吞咽困难 计算机科学 吞咽困难 自然语言处理 语音识别 人工智能 医学 放射科
作者
Sebastián Roldán-Vasco,Andrés Duque,Juan Camilo Suárez-Escudero,Juan Rafael Orozco-Arroyave
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:208: 106248-106248 被引量:21
标识
DOI:10.1016/j.cmpb.2021.106248
摘要

• The evaluation of swallowing impairments (i.e. dysphagia) is made by invasive and examiner’s dependent methods. • The physiology of the swallowing process led us to hypothesize that dysphagia can be assessed by non-invasive methods such as speech recordings • Speech related dimensions have been few addressed systematically in patients with dysphagia. • We found potential biomarkers of functional dysphagia from different speech tasks. • Automatic analyses driven by machine learning based models were carried out to determine the most suitable speech dimensions for dysphagia screening purposes. Background and objective: The normal swallowing process requires a complex coordination of anatomical structures driven by sensory and cranial nerves. Alterations in such coordination cause swallowing malfunctions, namely dysphagia. The dysphagia screening methods are quite subjective and experience dependent. Bearing in mind that the swallowing process and speech production share some anatomical structures and mechanisms of neurological control, this work aims to evaluate the suitability of automatic speech processing and machine learning techniques for screening of functional dysphagia. Methods: Speech recordings were collected from 46 patients with functional oropharyngeal dysphagia produced by neurological causes, and 46 healthy controls. The dimensions of speech including phonation, articulation, and prosody were considered through different speech tasks. Specific features per dimension were extracted and analyzed using statistical tests. Machine learning models were applied per dimension via nested cross-validation. Hyperparameters were selected using the AUC - ROC as optimization criterion. Results: The Random Forest in the articulation related speech tasks retrieved the highest performance measures ( AUC = 0.86 ± 0.10 , sensitivity = 0.91 ± 0.12 ) for individual analysis of dimensions. In addition, the combination of speech dimensions with a voting ensemble improved the results, which suggests a contribution of information from different feature sets extracted from speech signals in dysphagia conditions. Conclusions: The proposed approach based on speech related models is suitable for the automatic discrimination between dysphagic and healthy individuals. These findings seem to have potential use in the screening of functional oropharyngeal dysphagia in a non-invasive and inexpensive way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
简单夏之发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
3秒前
小邹同学发布了新的文献求助10
4秒前
彭于晏应助zxvcbnm采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
5秒前
FashionBoy应助ZJ采纳,获得60
5秒前
6秒前
6秒前
Mercury发布了新的文献求助10
6秒前
1988关注了科研通微信公众号
7秒前
肖玖辞发布了新的文献求助10
7秒前
随风发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
机智的仇天完成签到,获得积分10
9秒前
9秒前
9秒前
hhh发布了新的文献求助10
11秒前
秘小先儿完成签到,获得积分10
11秒前
豆腐法官发布了新的文献求助10
11秒前
11秒前
zxj完成签到,获得积分10
12秒前
miao发布了新的文献求助20
14秒前
14秒前
LN发布了新的文献求助10
14秒前
14秒前
14秒前
斯文败类应助justonce采纳,获得10
14秒前
csy发布了新的文献求助10
15秒前
修仙应助YYYZZX1采纳,获得10
17秒前
wu完成签到,获得积分10
18秒前
顾矜应助虚心的爆米花采纳,获得10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157866
求助须知:如何正确求助?哪些是违规求助? 2809202
关于积分的说明 7880857
捐赠科研通 2467704
什么是DOI,文献DOI怎么找? 1313664
科研通“疑难数据库(出版商)”最低求助积分说明 630476
版权声明 601943