清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning based analysis of speech dimensions in functional oropharyngeal dysphagia

口咽吞咽困难 计算机科学 吞咽困难 自然语言处理 语音识别 人工智能 医学 放射科
作者
Sebastián Roldán-Vasco,Andrés Duque,Juan Camilo Suárez-Escudero,Juan Rafael Orozco-Arroyave
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:208: 106248-106248 被引量:21
标识
DOI:10.1016/j.cmpb.2021.106248
摘要

• The evaluation of swallowing impairments (i.e. dysphagia) is made by invasive and examiner’s dependent methods. • The physiology of the swallowing process led us to hypothesize that dysphagia can be assessed by non-invasive methods such as speech recordings • Speech related dimensions have been few addressed systematically in patients with dysphagia. • We found potential biomarkers of functional dysphagia from different speech tasks. • Automatic analyses driven by machine learning based models were carried out to determine the most suitable speech dimensions for dysphagia screening purposes. Background and objective: The normal swallowing process requires a complex coordination of anatomical structures driven by sensory and cranial nerves. Alterations in such coordination cause swallowing malfunctions, namely dysphagia. The dysphagia screening methods are quite subjective and experience dependent. Bearing in mind that the swallowing process and speech production share some anatomical structures and mechanisms of neurological control, this work aims to evaluate the suitability of automatic speech processing and machine learning techniques for screening of functional dysphagia. Methods: Speech recordings were collected from 46 patients with functional oropharyngeal dysphagia produced by neurological causes, and 46 healthy controls. The dimensions of speech including phonation, articulation, and prosody were considered through different speech tasks. Specific features per dimension were extracted and analyzed using statistical tests. Machine learning models were applied per dimension via nested cross-validation. Hyperparameters were selected using the AUC - ROC as optimization criterion. Results: The Random Forest in the articulation related speech tasks retrieved the highest performance measures ( AUC = 0.86 ± 0.10 , sensitivity = 0.91 ± 0.12 ) for individual analysis of dimensions. In addition, the combination of speech dimensions with a voting ensemble improved the results, which suggests a contribution of information from different feature sets extracted from speech signals in dysphagia conditions. Conclusions: The proposed approach based on speech related models is suitable for the automatic discrimination between dysphagic and healthy individuals. These findings seem to have potential use in the screening of functional oropharyngeal dysphagia in a non-invasive and inexpensive way.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜猪完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
绿鬼蓝完成签到 ,获得积分10
25秒前
ajing完成签到,获得积分10
26秒前
上官若男应助优美香露采纳,获得30
28秒前
hyhy完成签到,获得积分10
37秒前
hyhy发布了新的文献求助10
42秒前
53秒前
于yu完成签到 ,获得积分10
1分钟前
sswbzh给宇文雨文的求助进行了留言
1分钟前
1分钟前
天雨流芳完成签到 ,获得积分10
1分钟前
巫马百招完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Qing完成签到 ,获得积分10
2分钟前
2分钟前
李木禾完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
zzhui完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
4分钟前
多少完成签到,获得积分10
4分钟前
Lei完成签到,获得积分10
4分钟前
5分钟前
披着羊皮的狼完成签到 ,获得积分10
5分钟前
Rottyyii发布了新的文献求助10
5分钟前
Edward完成签到,获得积分10
5分钟前
ramsey33完成签到 ,获得积分10
5分钟前
HaCat完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706593
求助须知:如何正确求助?哪些是违规求助? 5175383
关于积分的说明 15247065
捐赠科研通 4860032
什么是DOI,文献DOI怎么找? 2608323
邀请新用户注册赠送积分活动 1559256
关于科研通互助平台的介绍 1517033