绘画
强化学习
计算机科学
背景(考古学)
人工智能
图像(数学)
计算机视觉
视觉艺术
艺术
生物
古生物学
作者
Peter Schaldenbrand,Jean Oh
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2021-05-18
卷期号:35 (1): 505-512
被引量:25
标识
DOI:10.1609/aaai.v35i1.16128
摘要
The objective of most Reinforcement Learning painting agents is to minimize the loss between a target image and the paint canvas. Human painter artistry emphasizes important features of the target image rather than simply reproducing it. Using adversarial or L2 losses in the RL painting models, although its final output is generally a work of finesse, produces a stroke sequence that is vastly different from that which a human would produce since the model does not have knowledge about the abstract features in the target image. In order to increase the human-like planning of the model without the use of expensive human data, we introduce a new loss function for use with the model's reward function: Content Masked Loss. In the context of robot painting, Content Masked Loss employs an object detection model to extract features which are used to assign higher weight to regions of the canvas that a human would find important for recognizing content. The results, based on 332 human evaluators, show that the digital paintings produced by our Content Masked model show detectable subject matter earlier in the stroke sequence than existing methods without compromising on the quality of the final painting. Our code is available at https://github.com/pschaldenbrand/ContentMaskedLoss.
科研通智能强力驱动
Strongly Powered by AbleSci AI