基因敲除
基因沉默
体内分布
小干扰RNA
内体
内吞作用
药理学
去唾液酸糖蛋白受体
药代动力学
化学
核糖核酸
细胞生物学
生物
RNA干扰
分子生物学
生物化学
体外
受体
基因
肝细胞
作者
Vivaswath S. Ayyar,Dawei Song,Songmao Zheng,Thomas Carpenter,Donald Heald
标识
DOI:10.1124/jpet.121.000805
摘要
Conjugation of small interfering RNA (siRNA) to tris N-acetylgalactosamine [(GalNAc)3] can enable highly selective, potent, and durable knockdown of targeted proteins in the liver. However, potential knowledge gaps between in vitro experiments, preclinical species, and clinical scenarios remain. A minimal physiologically based pharmacokinetic-pharmacodynamic model for GalNAc-conjugated siRNA (GalNAc-siRNA) was developed using published data for fitusiran (ALN-AT3), an investigational compound targeting liver antithrombin (AT), to delineate putative determinants governing the whole-body–to-cellular pharmacokinetic (PK) and pharmacodynamic (PD) properties of GalNAc-siRNA and facilitate preclinical-to-clinical translation. The model mathematically linked relevant mechanisms: 1) hepatic biodistribution, 2) tris-GalNAc binding to asialoglycoprotein receptors (ASGPRs) on hepatocytes, 3) ASGPR endocytosis and recycling, 4) endosomal transport and escape of siRNA, 5) cytoplasmic RNA-induced silencing complex (RISC) loading, 6) degradation of target mRNA by bound RISC, and 7) knockdown of protein. Physiologic values for 36 out of 48 model parameters were obtained from the literature. Kinetic parameters governing (GalNAc)3-ASGPR binding and internalization were derived from published studies of uptake in hepatocytes. The proposed model well characterized reported pharmacokinetics, RISC dynamics, and knockdown of AT mRNA and protein by ALN-AT3 in mice. The model bridged multiple PK-PD data sets in preclinical species (mice, rat, monkey) and successfully captured reported plasma pharmacokinetics and AT knockdown in a phase I ascending-dose study. Estimates of in vivo potency were similar (∼2-fold) across species. Subcutaneous absorption and serum AT degradation rate constants scaled across species by body weight with allometric exponents of −0.29 and −0.22. The proposed mechanistic modeling framework characterizes the unique PK-PD properties of GalNAc-siRNA.
SIGNIFICANCE STATEMENT
Tris N-acetylgalactosamine (GalNAc)3–conjugated small interfering RNA (siRNA) therapeutics enable liver-targeted gene therapy and precision medicine. Using a translational and systems-based minimal physiologically based pharmacokinetic-pharmacodynamic (mPBPK-PD) modeling approach, putative determinants influencing GalNAc-conjugated siRNA (GalNAc-siRNA) functionality in three preclinical species and humans were investigated. The developed model successfully integrated and characterized relevant published in vitro–derived biomeasures, mechanistic PK-PD profiles in animals, and observed clinical PK-PD responses for an investigational GalNAc-siRNA (fitusiran). This modeling effort delineates the disposition and liver-targeted pharmacodynamics of GalNAc-siRNA.
科研通智能强力驱动
Strongly Powered by AbleSci AI