A Vision-Based Monitoring Method for the Looseness of High-Strength Bolt

螺母和螺栓 可靠性(半导体) 扭矩 计算机科学 螺栓连接 工程类 编码(集合论) 扳手 结构工程 有限元法 量子力学 热力学 物理 功率(物理) 集合(抽象数据类型) 程序设计语言
作者
Yue Pan,Yunlong Ma,Yiqing Dong,Zhenxiong Gu,Dalei Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:25
标识
DOI:10.1109/tim.2021.3101316
摘要

Bolts are widely applied to the connections of structural components. Under the actions of alternative forces induced by the external loads, the bolts are commonly inevitable to be loosening in engineering, which will be a threat to structural safety. To avoid the reduction of the pretightening force, it is vital to examine the status of bolts periodically. So far, manual inspection with a torque wrench is the most frequently used approach, even though it is time-consuming, labor-intensive, and low frequency of data acquisitions for structural maintenance. Due to the looseness of bolts which commonly follows with relative rotation between bolts and nuts, in this study, a vision-based bolt monitoring system with an Internet of Things (IoT) device is proposed. Specifically, to observe the relative rotation between bolts and nuts, a novel barcode marker (termed PAC-code) is introduced at first. As followed, a corresponding smart device embedded with PAC-code decoding algorithm is also described for the further long-term monitoring of bolt looseness. Finally, a laboratory-based experiment was carried out to validate the reliability and precision of our system. The results indicate that the proposed system is sensitive in the identification of angular changes and can be used to monitor the looseness of bolts as precise as 0.1°. This technique is not only easy to be deployed with high economic efficiency in engineering but also meaningful for the data acquisition in bolts looseness-proof research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
berry发布了新的文献求助10
刚刚
超11发布了新的文献求助10
刚刚
1秒前
1秒前
隐形曼青应助烩面大师采纳,获得10
1秒前
1秒前
默然的歌完成签到 ,获得积分10
1秒前
CTL发布了新的文献求助10
2秒前
2秒前
2秒前
大鹏完成签到,获得积分10
2秒前
2秒前
2秒前
congguitar发布了新的文献求助10
3秒前
CodeCraft应助韭黄采纳,获得10
3秒前
3秒前
小月发布了新的文献求助10
3秒前
香蕉觅云应助学渣向下采纳,获得10
4秒前
4秒前
YML完成签到,获得积分10
5秒前
荣安安完成签到,获得积分10
5秒前
啦某某完成签到,获得积分10
5秒前
sunzhiyu233发布了新的文献求助10
6秒前
zhenzhen发布了新的文献求助10
6秒前
fang发布了新的文献求助10
6秒前
chengyulin完成签到 ,获得积分10
6秒前
孙二二发布了新的文献求助10
6秒前
小二郎应助SY采纳,获得10
7秒前
Akim应助顺心的惜蕊采纳,获得10
8秒前
8秒前
berry完成签到,获得积分20
9秒前
康小郁完成签到,获得积分10
9秒前
快乐友灵完成签到,获得积分10
9秒前
10秒前
群木成林完成签到,获得积分10
10秒前
小白一号完成签到 ,获得积分10
10秒前
Cynthia完成签到 ,获得积分10
10秒前
李惊鸿完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759