A Vision-Based Monitoring Method for the Looseness of High-Strength Bolt

螺母和螺栓 可靠性(半导体) 扭矩 计算机科学 螺栓连接 工程类 编码(集合论) 扳手 结构工程 有限元法 量子力学 热力学 物理 功率(物理) 集合(抽象数据类型) 程序设计语言
作者
Yue Pan,Yunlong Ma,Yiqing Dong,Zhenxiong Gu,Dalei Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:25
标识
DOI:10.1109/tim.2021.3101316
摘要

Bolts are widely applied to the connections of structural components. Under the actions of alternative forces induced by the external loads, the bolts are commonly inevitable to be loosening in engineering, which will be a threat to structural safety. To avoid the reduction of the pretightening force, it is vital to examine the status of bolts periodically. So far, manual inspection with a torque wrench is the most frequently used approach, even though it is time-consuming, labor-intensive, and low frequency of data acquisitions for structural maintenance. Due to the looseness of bolts which commonly follows with relative rotation between bolts and nuts, in this study, a vision-based bolt monitoring system with an Internet of Things (IoT) device is proposed. Specifically, to observe the relative rotation between bolts and nuts, a novel barcode marker (termed PAC-code) is introduced at first. As followed, a corresponding smart device embedded with PAC-code decoding algorithm is also described for the further long-term monitoring of bolt looseness. Finally, a laboratory-based experiment was carried out to validate the reliability and precision of our system. The results indicate that the proposed system is sensitive in the identification of angular changes and can be used to monitor the looseness of bolts as precise as 0.1°. This technique is not only easy to be deployed with high economic efficiency in engineering but also meaningful for the data acquisition in bolts looseness-proof research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电里璃完成签到 ,获得积分10
刚刚
1秒前
826871896发布了新的文献求助10
1秒前
奶斯完成签到,获得积分10
2秒前
2秒前
莫西莫西完成签到,获得积分10
2秒前
小二郎应助清爽四娘采纳,获得10
2秒前
qiuxiali123完成签到,获得积分10
2秒前
随遇而安完成签到 ,获得积分10
3秒前
3秒前
3秒前
5秒前
舒心怀寒完成签到,获得积分10
5秒前
6秒前
8秒前
Amon完成签到 ,获得积分10
8秒前
淡淡文轩发布了新的文献求助10
8秒前
刻苦的煎蛋完成签到,获得积分10
9秒前
zmin发布了新的文献求助10
9秒前
上官若男应助奇怪的柒采纳,获得10
9秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
完美世界应助妙木仙采纳,获得10
12秒前
12秒前
lx发布了新的文献求助10
12秒前
12秒前
katata完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
耶耶耶完成签到,获得积分10
13秒前
年轮发布了新的文献求助20
14秒前
14秒前
sekiro发布了新的文献求助10
14秒前
啦啦啦完成签到 ,获得积分10
15秒前
等候完成签到 ,获得积分10
15秒前
沐眿发布了新的文献求助10
15秒前
chengxiaoli完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718409
求助须知:如何正确求助?哪些是违规求助? 5252448
关于积分的说明 15285701
捐赠科研通 4868645
什么是DOI,文献DOI怎么找? 2614320
邀请新用户注册赠送积分活动 1564168
关于科研通互助平台的介绍 1521611