Multi-objective optimization (MOO) for high-rise residential buildings’ layout centered on daylight, visual, and outdoor thermal metrics in China

日光 中国 采光 热舒适性 环境科学 热感觉 计算机科学 土木工程 建筑工程 热的 运输工程 工程类 环境工程 地理 气象学 物理 光学 考古
作者
Shanshan Wang,Yun Kyu Yi,NianXiong Liu
出处
期刊:Building and Environment [Elsevier]
卷期号:205: 108263-108263 被引量:78
标识
DOI:10.1016/j.buildenv.2021.108263
摘要

Nowadays building performance optimization is extended to urban planning Multi-Objective Optimization (MOO). Most research focuses on the optimization of energy use and daylight performance of building design. Buildings optimized for performance metrics rarely consider different performances together. Without integrating different building performance areas, the solution found from optimization will not be a balanced or trade-off one. This paper proposes a method to extend the use of optimization to cover multi-discipline areas that optimize visual comfort and outdoor thermal performances on the layout of high-rise residential buildings. Daylight, sunlight hours, the sky view, and outdoor thermal comfort were the performance objectives. A parametric building model was built to control the buildings’ layout and simulation tools were used to find the performance of objectives. To accelerate the simulation process, an Artificial Neural Network (ANN) was applied to the building simulation models to calculate the performance results rapidly. ANN model had an average accuracy of 89.9% across all outcomes. The MOO method was conducted to find integrated solutions to the building layouts on site. By ranking the optimized solutions based on five combined performance targets, the top 10 out of 150 building layout options were identified, indicating an almost 21% better performance than the baseline case. Moreover, the top 30 out of 150 optimum cases performed better than the baseline. The study demonstrates that the proposed MOO method that combines visual comfort and outdoor thermal measurements can improve and contribute to a sustainable building layout design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私芝麻发布了新的文献求助10
2秒前
茉莉发布了新的文献求助10
3秒前
英俊的铭应助赵媛采纳,获得10
4秒前
Akim应助懋懋采纳,获得10
4秒前
静静发布了新的文献求助20
4秒前
4秒前
4秒前
Ava应助忧郁背包采纳,获得10
4秒前
米龙完成签到,获得积分10
5秒前
张张完成签到,获得积分10
5秒前
开拖拉机的芍药完成签到 ,获得积分10
5秒前
5秒前
6秒前
壮壮完成签到,获得积分20
6秒前
念慈关注了科研通微信公众号
7秒前
等待黎明完成签到,获得积分10
7秒前
radom完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
coloy完成签到,获得积分10
8秒前
seal发布了新的文献求助10
9秒前
10秒前
12秒前
权寻梅完成签到,获得积分10
12秒前
忐忑的方盒完成签到 ,获得积分10
13秒前
傻傻的一刀完成签到,获得积分10
13秒前
15秒前
传奇3应助howard采纳,获得10
15秒前
学酥垃圾发布了新的文献求助20
16秒前
qq发布了新的文献求助10
16秒前
忆南完成签到,获得积分10
16秒前
怕孤独的凝海完成签到,获得积分10
17秒前
liran12319发布了新的文献求助20
17秒前
隐形曼青应助哦啦啦采纳,获得10
17秒前
快乐小白菜完成签到,获得积分10
19秒前
体贴太英发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
张自燮发布了新的文献求助10
21秒前
seal完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653156
求助须知:如何正确求助?哪些是违规求助? 4789346
关于积分的说明 15062969
捐赠科研通 4811762
什么是DOI,文献DOI怎么找? 2574063
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488445