Multi-objective optimization (MOO) for high-rise residential buildings’ layout centered on daylight, visual, and outdoor thermal metrics in China

日光 中国 采光 热舒适性 环境科学 热感觉 计算机科学 土木工程 建筑工程 热的 运输工程 工程类 环境工程 地理 气象学 物理 光学 考古
作者
Shanshan Wang,Yun Kyu Yi,NianXiong Liu
出处
期刊:Building and Environment [Elsevier]
卷期号:205: 108263-108263 被引量:78
标识
DOI:10.1016/j.buildenv.2021.108263
摘要

Nowadays building performance optimization is extended to urban planning Multi-Objective Optimization (MOO). Most research focuses on the optimization of energy use and daylight performance of building design. Buildings optimized for performance metrics rarely consider different performances together. Without integrating different building performance areas, the solution found from optimization will not be a balanced or trade-off one. This paper proposes a method to extend the use of optimization to cover multi-discipline areas that optimize visual comfort and outdoor thermal performances on the layout of high-rise residential buildings. Daylight, sunlight hours, the sky view, and outdoor thermal comfort were the performance objectives. A parametric building model was built to control the buildings’ layout and simulation tools were used to find the performance of objectives. To accelerate the simulation process, an Artificial Neural Network (ANN) was applied to the building simulation models to calculate the performance results rapidly. ANN model had an average accuracy of 89.9% across all outcomes. The MOO method was conducted to find integrated solutions to the building layouts on site. By ranking the optimized solutions based on five combined performance targets, the top 10 out of 150 building layout options were identified, indicating an almost 21% better performance than the baseline case. Moreover, the top 30 out of 150 optimum cases performed better than the baseline. The study demonstrates that the proposed MOO method that combines visual comfort and outdoor thermal measurements can improve and contribute to a sustainable building layout design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ForZero发布了新的文献求助10
2秒前
华仔应助hello采纳,获得10
2秒前
2秒前
dddd发布了新的文献求助10
3秒前
韩soso发布了新的文献求助10
3秒前
欢乐的零完成签到,获得积分10
3秒前
阿飞完成签到,获得积分10
3秒前
沫s发布了新的文献求助10
3秒前
3秒前
where完成签到,获得积分10
3秒前
小鱼爱吃肉应助吧唧吧唧采纳,获得10
4秒前
幽默科研人完成签到,获得积分20
6秒前
秋以南发布了新的文献求助10
6秒前
椰子应助衰神采纳,获得10
8秒前
金也发布了新的文献求助10
9秒前
11秒前
11秒前
yannn完成签到,获得积分10
12秒前
小小虾完成签到,获得积分10
13秒前
amupf发布了新的文献求助10
15秒前
今后应助男研选手采纳,获得10
15秒前
欢乐的零发布了新的文献求助10
15秒前
英姑应助W85采纳,获得10
16秒前
科研通AI2S应助lin采纳,获得10
16秒前
爆米花应助jiujiuhuang采纳,获得10
17秒前
18秒前
21秒前
充电宝应助侯博文采纳,获得20
21秒前
dddd完成签到,获得积分10
22秒前
22秒前
隐形曼青应助jinx123456采纳,获得10
22秒前
23秒前
田様应助勇猛的西瓜采纳,获得10
23秒前
hello发布了新的文献求助10
24秒前
安静听白发布了新的文献求助10
24秒前
25秒前
男研选手完成签到,获得积分10
25秒前
所所应助大有阳光采纳,获得10
25秒前
儒雅的如松完成签到 ,获得积分10
25秒前
打打应助烛夜黎采纳,获得30
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325517
求助须知:如何正确求助?哪些是违规求助? 2956172
关于积分的说明 8579434
捐赠科研通 2634123
什么是DOI,文献DOI怎么找? 1441760
科研通“疑难数据库(出版商)”最低求助积分说明 667943
邀请新用户注册赠送积分活动 654731