Turn-to-Turn Short Circuit Fault Localization in Transformer Winding via Image Processing and Deep Learning Method

变压器 可视化 电磁线圈 计算机科学 电阻抗 卷积神经网络 人工智能 故障检测与隔离 电子工程 模式识别(心理学) 工程类 电压 电气工程 执行机构
作者
Arash Moradzadeh,Hamed Moayyed,Behnam Mohammadi‐Ivatloo,Gevork B. Gharehpetian,A. Pedro Aguiar
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (7): 4417-4426 被引量:63
标识
DOI:10.1109/tii.2021.3105932
摘要

Frequency response analysis (FRA) suffers from the interpretation of results despite its potential ability to detect faults related to the power transformer windings. This article presents a technique for interpreting frequency responses, which is based on image processing and a deep learning method called graph convolutional neural network (CNN). The proposed procedure transfers frequency responses into 2-D images through a visualization technique. The resulting images are aggregated into a dataset to be used as the CNN input. The proposed technique is applied on frequency responses of two different winding models with short circuit (SC) faults. The SC faults with different intensities are applied on different sections of a simulated ladder model winding and a 20 kV winding of a 1.6 MVA distribution transformer. After determining the frequency response for each faulty case and applying the visualization technique, the precise locating of the SC faults is performed by the CNN. Then, the results are analyzed by performance evaluation metrics. At this stage, the high performance of the CNN in the use of 2-D images instead of the conventional method is observed. Finally, by testing the high impedance SC faults in different sections of the simulated winding model and applying the suggested method step by step, early detection of the SC fault is also performed in this article. It should be noted that the suggested technique, in addition to its accuracy and high detection speed, can be considered as an important step in automatic interpretation of frequency responses for online monitoring of transformers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YoungZ完成签到,获得积分10
刚刚
浮游应助天使她男人采纳,获得10
1秒前
机灵曼荷完成签到,获得积分10
1秒前
Prehye完成签到,获得积分10
2秒前
小王同学完成签到,获得积分20
2秒前
FashionBoy应助青阳采纳,获得10
2秒前
认真小鸽子关注了科研通微信公众号
3秒前
爆米花应助XIAOzhiqiang采纳,获得10
3秒前
5秒前
斯文败类应助手拿把掐吴采纳,获得10
5秒前
天天快乐应助谨慎的雨梅采纳,获得10
7秒前
云吞发布了新的文献求助10
9秒前
Atom完成签到,获得积分10
11秒前
直率的惮完成签到,获得积分10
11秒前
11秒前
12秒前
科研通AI2S应助花灯王子采纳,获得10
12秒前
14秒前
15秒前
丘比特应助文艺八宝粥采纳,获得10
16秒前
完美世界应助小乔同学采纳,获得10
16秒前
一二发布了新的文献求助30
17秒前
17秒前
俊逸醉薇完成签到,获得积分20
18秒前
月亮完成签到,获得积分10
20秒前
20秒前
111完成签到,获得积分10
22秒前
英姑应助风清扬采纳,获得10
22秒前
王m完成签到 ,获得积分10
22秒前
瑞瑞刘发布了新的文献求助10
23秒前
杨诗婕完成签到 ,获得积分10
23秒前
云吞完成签到,获得积分10
23秒前
laville完成签到,获得积分10
24秒前
豆4799发布了新的文献求助10
26秒前
qixing发布了新的文献求助10
27秒前
Lucas应助马里奥爱科研采纳,获得10
29秒前
32秒前
周博完成签到,获得积分10
33秒前
bkagyin应助温暖的书白采纳,获得10
33秒前
潘pan发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538180
求助须知:如何正确求助?哪些是违规求助? 3972815
关于积分的说明 12307000
捐赠科研通 3639634
什么是DOI,文献DOI怎么找? 2003948
邀请新用户注册赠送积分活动 1039402
科研通“疑难数据库(出版商)”最低求助积分说明 928744