Turn-to-Turn Short Circuit Fault Localization in Transformer Winding via Image Processing and Deep Learning Method

变压器 可视化 电磁线圈 计算机科学 电阻抗 卷积神经网络 人工智能 故障检测与隔离 电子工程 模式识别(心理学) 工程类 电压 电气工程 执行机构
作者
Arash Moradzadeh,Hamed Moayyed,Behnam Mohammadi‐Ivatloo,Gevork B. Gharehpetian,A. Pedro Aguiar
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (7): 4417-4426 被引量:63
标识
DOI:10.1109/tii.2021.3105932
摘要

Frequency response analysis (FRA) suffers from the interpretation of results despite its potential ability to detect faults related to the power transformer windings. This article presents a technique for interpreting frequency responses, which is based on image processing and a deep learning method called graph convolutional neural network (CNN). The proposed procedure transfers frequency responses into 2-D images through a visualization technique. The resulting images are aggregated into a dataset to be used as the CNN input. The proposed technique is applied on frequency responses of two different winding models with short circuit (SC) faults. The SC faults with different intensities are applied on different sections of a simulated ladder model winding and a 20 kV winding of a 1.6 MVA distribution transformer. After determining the frequency response for each faulty case and applying the visualization technique, the precise locating of the SC faults is performed by the CNN. Then, the results are analyzed by performance evaluation metrics. At this stage, the high performance of the CNN in the use of 2-D images instead of the conventional method is observed. Finally, by testing the high impedance SC faults in different sections of the simulated winding model and applying the suggested method step by step, early detection of the SC fault is also performed in this article. It should be noted that the suggested technique, in addition to its accuracy and high detection speed, can be considered as an important step in automatic interpretation of frequency responses for online monitoring of transformers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂呆发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
李健应助大力的含卉采纳,获得10
2秒前
3秒前
3秒前
DDMouse关注了科研通微信公众号
4秒前
peace发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
勤恳的惜文完成签到,获得积分20
5秒前
南0418发布了新的文献求助10
5秒前
7秒前
lhy发布了新的文献求助10
8秒前
bkagyin应助小屁孩采纳,获得10
8秒前
852应助放逐采纳,获得10
9秒前
10秒前
科研通AI2S应助溜达鸡采纳,获得10
10秒前
水澈天澜完成签到,获得积分10
12秒前
zxping发布了新的文献求助10
13秒前
13秒前
15秒前
16秒前
嘟嘟图图完成签到,获得积分10
16秒前
直率新柔发布了新的文献求助10
16秒前
格洛Zz发布了新的文献求助10
16秒前
科研通AI6应助为神指路采纳,获得10
16秒前
17秒前
17秒前
半青一江完成签到 ,获得积分10
17秒前
18秒前
18秒前
111发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
桀庚发布了新的文献求助10
23秒前
23秒前
arong完成签到,获得积分0
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867785
求助须知:如何正确求助?哪些是违规求助? 4159730
关于积分的说明 12898784
捐赠科研通 3913874
什么是DOI,文献DOI怎么找? 2149487
邀请新用户注册赠送积分活动 1168010
关于科研通互助平台的介绍 1070422