Turn-to-Turn Short Circuit Fault Localization in Transformer Winding via Image Processing and Deep Learning Method

变压器 可视化 电磁线圈 计算机科学 电阻抗 卷积神经网络 人工智能 故障检测与隔离 电子工程 模式识别(心理学) 工程类 电压 电气工程 执行机构
作者
Arash Moradzadeh,Hamed Moayyed,Behnam Mohammadi‐Ivatloo,Gevork B. Gharehpetian,A. Pedro Aguiar
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (7): 4417-4426 被引量:42
标识
DOI:10.1109/tii.2021.3105932
摘要

Frequency response analysis (FRA) suffers from the interpretation of results despite its potential ability to detect faults related to the power transformer windings. This article presents a technique for interpreting frequency responses, which is based on image processing and a deep learning method called graph convolutional neural network (CNN). The proposed procedure transfers frequency responses into 2-D images through a visualization technique. The resulting images are aggregated into a dataset to be used as the CNN input. The proposed technique is applied on frequency responses of two different winding models with short circuit (SC) faults. The SC faults with different intensities are applied on different sections of a simulated ladder model winding and a 20 kV winding of a 1.6 MVA distribution transformer. After determining the frequency response for each faulty case and applying the visualization technique, the precise locating of the SC faults is performed by the CNN. Then, the results are analyzed by performance evaluation metrics. At this stage, the high performance of the CNN in the use of 2-D images instead of the conventional method is observed. Finally, by testing the high impedance SC faults in different sections of the simulated winding model and applying the suggested method step by step, early detection of the SC fault is also performed in this article. It should be noted that the suggested technique, in addition to its accuracy and high detection speed, can be considered as an important step in automatic interpretation of frequency responses for online monitoring of transformers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱江涛完成签到 ,获得积分10
刚刚
1秒前
纥江完成签到,获得积分10
3秒前
xz完成签到 ,获得积分10
4秒前
vision应助淡淡安筠采纳,获得10
4秒前
4秒前
balabala发布了新的文献求助10
5秒前
小周完成签到,获得积分20
6秒前
平常的凡波完成签到,获得积分10
7秒前
7秒前
飞快的斓完成签到,获得积分10
9秒前
随便完成签到,获得积分10
11秒前
朱江涛发布了新的文献求助10
11秒前
12秒前
iconcrete应助Rainbow采纳,获得10
15秒前
小马甲应助feb采纳,获得10
15秒前
科研通AI2S应助纥江采纳,获得10
15秒前
hwezhu发布了新的文献求助10
17秒前
我是老大应助朱江涛采纳,获得10
17秒前
万能图书馆应助费费采纳,获得30
17秒前
su完成签到,获得积分10
18秒前
18秒前
小亮哈哈完成签到,获得积分10
20秒前
栗子完成签到,获得积分10
20秒前
25秒前
bkagyin应助balabala采纳,获得10
25秒前
武元彤发布了新的文献求助10
25秒前
ddding完成签到 ,获得积分10
26秒前
26秒前
CipherSage应助hwezhu采纳,获得10
26秒前
26秒前
bkagyin应助Echo采纳,获得10
26秒前
27秒前
流苏完成签到,获得积分20
27秒前
28秒前
28秒前
慕暖发布了新的文献求助10
29秒前
DZW发布了新的文献求助10
29秒前
30秒前
feb发布了新的文献求助10
31秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117099
求助须知:如何正确求助?哪些是违规求助? 2767036
关于积分的说明 7689541
捐赠科研通 2422396
什么是DOI,文献DOI怎么找? 1286206
科研通“疑难数据库(出版商)”最低求助积分说明 620271
版权声明 599837