材料科学
微观结构
延伸率
共晶体系
成核
极限抗拉强度
开裂
复合材料
结构材料
合金
延展性(地球科学)
蠕动
有机化学
化学
作者
Peijian Shi,Runguang Li,Yi Li,Yuebo Wen,Yunbo Zhong,Weili Ren,Zhe Shen,Tianxiang Zheng,Jianchao Peng,Liang Xue,Pengfei Hu,Na Min,Yong Zhang,Yang Ren,Peter K. Liaw,Dierk Raabe,Yandong Wang
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2021-08-19
卷期号:373 (6557): 912-918
被引量:398
标识
DOI:10.1126/science.abf6986
摘要
In human-made malleable materials, microdamage such as cracking usually limits material lifetime. Some biological composites, such as bone, have hierarchical microstructures that tolerate cracks but cannot withstand high elongation. We demonstrate a directionally solidified eutectic high-entropy alloy (EHEA) that successfully reconciles crack tolerance and high elongation. The solidified alloy has a hierarchically organized herringbone structure that enables bionic-inspired hierarchical crack buffering. This effect guides stable, persistent crystallographic nucleation and growth of multiple microcracks in abundant poor-deformability microstructures. Hierarchical buffering by adjacent dynamic strain-hardened features helps the cracks to avoid catastrophic growth and percolation. Our self-buffering herringbone material yields an ultrahigh uniform tensile elongation (~50%), three times that of conventional nonbuffering EHEAs, without sacrificing strength.
科研通智能强力驱动
Strongly Powered by AbleSci AI