Spatial-temporal predictions in a dynamic visual search

任务(项目管理) 预测(人工智能) 视觉搜索 启动(农业) 计算机科学 变化(天文学) 认知心理学 视觉注意 心理学 认知 人工智能 神经科学 生物 发芽 物理 植物 经济 天体物理学 管理
作者
Nir Shalev,Sage Boettcher,Anna C. Nobre
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:21 (9): 39-39 被引量:3
标识
DOI:10.1167/jov.21.9.39
摘要

Our environment contains many regularities that allow the anticipation of upcoming events. Waiting for a traffic light to change, an elevator to arrive, or using a toaster: all contain temporal ‘rules’ that can be learned and used to improve performance. We investigated the guidance of spatial attention based on spatial-temporal associations using a dynamic variation of a visual search task. On each trial, individuals searched for eight targets among distractors, all fading in and out of the display at different locations and times. The screen was split into four distinct quadrants. Crucially, we rendered four targets predictable by presenting them repeatedly in the same quadrants and times throughout the task. The other four targets were randomly distributed in their locations and onsets. At the first part of our talk, we will show that participants are faster and more accurate in detecting predictable targets. We identify this benefit when testing both young adults (age 18-30), and in a cohort of young children (age 5-6). At the second part of the talk, we will present a further inquiry about the source of the behavioural benefit, contrasting sequential-priming vs. memory guidance. We do so by introducing two more task variations: one in which the onsets and locations of all targets occasionally repeated in successive trials; and one in which the trial pattern was occasionally violated. The results suggest that both factors, i.e., priming and memory, provide a useful source for guiding attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助wjx采纳,获得10
刚刚
在水一方应助wjx采纳,获得10
1秒前
科研通AI2S应助wjx采纳,获得10
1秒前
氮三氟甲基应助wjx采纳,获得10
1秒前
FashionBoy应助wjx采纳,获得30
1秒前
天天快乐应助wjx采纳,获得10
1秒前
ding应助一一采纳,获得10
2秒前
weishen完成签到,获得积分0
2秒前
2秒前
福尔摩曦完成签到,获得积分10
3秒前
3秒前
Feng发布了新的文献求助10
3秒前
聪明可爱小绘理应助高磊采纳,获得10
4秒前
wt完成签到,获得积分10
5秒前
444关闭了444文献求助
6秒前
ZYQ完成签到 ,获得积分10
6秒前
苏苏完成签到,获得积分10
7秒前
7秒前
7秒前
高大黄蜂完成签到,获得积分10
8秒前
新青年应助gmc采纳,获得10
8秒前
勤劳落雁发布了新的文献求助10
8秒前
超帅的从菡完成签到 ,获得积分10
8秒前
leena发布了新的文献求助10
8秒前
斯文败类应助Hh采纳,获得10
9秒前
高大黄蜂发布了新的文献求助10
10秒前
英姑应助guygun采纳,获得10
10秒前
Feng完成签到,获得积分10
11秒前
12秒前
花花完成签到,获得积分10
12秒前
一言矣完成签到 ,获得积分10
13秒前
海绵宝宝完成签到,获得积分10
14秒前
贪吃的猴子完成签到,获得积分10
14秒前
long完成签到 ,获得积分10
15秒前
研友_LOqqmZ发布了新的文献求助10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
kilig应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824