Causal Incremental Graph Convolution for Recommender System Retraining

计算机科学 再培训 理论计算机科学 人工智能 卷积(计算机科学) 合成数据 图形 推荐系统 机器学习 数据挖掘 推论 人工神经网络 业务 国际贸易
作者
Sihao Ding,Fuli Feng,Xiangnan He,Yong Liao,Jun Shi,Yongdong Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:15
标识
DOI:10.1109/tnnls.2022.3156066
摘要

The real-world recommender system needs to be regularly retrained to keep with the new data. In this work, we consider how to efficiently retrain graph convolution network (GCN)-based recommender models that are state-of-the-art techniques for the collaborative recommendation. To pursue high efficiency, we set the target as using only new data for model updating, meanwhile not sacrificing the recommendation accuracy compared with full model retraining. This is nontrivial to achieve since the interaction data participates in both the graph structure for model construction and the loss function for model learning, whereas the old graph structure is not allowed to use in model updating. Toward the goal, we propose a causal incremental graph convolution (IGC) approach, which consists of two new operators named IGC and colliding effect distillation (CED) to estimate the output of full graph convolution. In particular, we devise simple and effective modules for IGC to ingeniously combine the old representations and the incremental graph and effectively fuse the long- and short-term preference signals. CED aims to avoid the out-of-date issue of inactive nodes that are not in the incremental graph, which connects the new data with inactive nodes through causal inference. In particular, CED estimates the causal effect of new data on the representation of inactive nodes through the control of their collider. Extensive experiments on three real-world datasets demonstrate both accuracy gains and significant speed-ups over the existing retraining mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
1秒前
2秒前
爆米花应助兔美酱采纳,获得10
3秒前
在水一方应助哈哈哈哈采纳,获得10
3秒前
3秒前
wei发布了新的文献求助10
4秒前
5秒前
Lance完成签到,获得积分10
5秒前
6秒前
Jerry完成签到,获得积分10
7秒前
8秒前
8秒前
隐形幻竹发布了新的文献求助10
8秒前
9秒前
sctaaa发布了新的文献求助10
9秒前
乐白完成签到,获得积分10
9秒前
9秒前
10秒前
1111完成签到 ,获得积分10
10秒前
11秒前
11秒前
恒星七纪发布了新的文献求助10
11秒前
大个应助笑点低的南琴采纳,获得10
11秒前
张贵虎完成签到 ,获得积分10
11秒前
12秒前
zzl-2000发布了新的文献求助10
12秒前
阿里院士完成签到,获得积分10
12秒前
13秒前
壮观梦易发布了新的文献求助10
14秒前
壮观梦易发布了新的文献求助10
14秒前
壮观梦易发布了新的文献求助10
14秒前
壮观梦易发布了新的文献求助30
14秒前
14秒前
壮观梦易发布了新的文献求助10
14秒前
壮观梦易发布了新的文献求助10
14秒前
壮观梦易发布了新的文献求助10
14秒前
壮观梦易发布了新的文献求助10
14秒前
wei完成签到,获得积分20
14秒前
ywb关闭了ywb文献求助
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141