HS–SPME–GC–MS and Electronic Nose Reveal Differences in the Volatile Profiles of Hedychium Flowers

电子鼻 气相色谱-质谱法 萜类 植物 化学 生物 质谱法 萜烯 色谱法 立体化学 神经科学
作者
Yiwei Zhou,Farhat Abbas,Zhidong Wang,Yunyi Yu,Yuechong Yue,Xinyue Li,Rangcai Yu,Yanping Fan
出处
期刊:Molecules [MDPI AG]
卷期号:26 (17): 5425-5425 被引量:31
标识
DOI:10.3390/molecules26175425
摘要

Floral fragrance is one of the most important characteristics of ornamental plants and plays a pivotal role in plant lifespan such as pollinator attraction, pest repelling, and protection against abiotic and biotic stresses. However, the precise determination of floral fragrance is limited. In the present study, the floral volatile compounds of six Hedychium accessions exhibiting from faint to highly fragrant were comparatively analyzed via gas chromatography–mass spectrometry (GC–MS) and Electronic nose (E-nose). A total of 42 volatile compounds were identified through GC–MS analysis, including monoterpenoids (18 compounds), sesquiterpenoids (12), benzenoids/phenylpropanoids (8), fatty acid derivatives (2), and others (2). In Hedychium coronarium ‘ZS’, H. forrestii ‘Gaoling’, H. ‘Jin’, H. ‘Caixia’, and H. ‘Zhaoxia’, monoterpenoids were abundant, while sesquiterpenoids were found in large quantities in H. coccineum ‘KMH’. Hierarchical clustering analysis (HCA) divided the 42 volatile compounds into four different groups (I, II, III, IV), and Spearman correlation analysis showed these compounds to have different degrees of correlation. The E-nose was able to group the different accessions in the principal component analysis (PCA) corresponding to scent intensity. Furthermore, the pattern-recognition findings confirmed that the E-nose data validated the GC–MS results. The partial least squares (PLS) analysis between floral volatile compounds and sensors suggested that specific sensors were highly sensitive to terpenoids. In short, the E-nose is proficient in discriminating Hedychium accessions of different volatile profiles in both quantitative and qualitative aspects, offering an accurate and rapid reference technique for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚风发布了新的文献求助10
1秒前
2秒前
5秒前
5秒前
淡墨嫣然sx完成签到,获得积分10
5秒前
科研通AI5应助xmx采纳,获得10
7秒前
8秒前
爱笑的孤萍发布了新的文献求助100
8秒前
852应助糊涂的青亦采纳,获得10
8秒前
8秒前
坚定的铃铛应助老孟采纳,获得20
9秒前
10秒前
所所应助123采纳,获得10
10秒前
淡然的洙发布了新的文献求助10
11秒前
sq发布了新的文献求助10
12秒前
陈晚拧发布了新的文献求助10
12秒前
0p9ol8ik完成签到,获得积分10
13秒前
13秒前
干净含烟发布了新的文献求助10
15秒前
16秒前
Shuyang发布了新的文献求助10
17秒前
Summer发布了新的文献求助30
17秒前
王ml发布了新的文献求助10
18秒前
托儿班老四关注了科研通微信公众号
18秒前
托儿班老四关注了科研通微信公众号
18秒前
影啊影完成签到,获得积分10
19秒前
19秒前
lz发布了新的文献求助10
19秒前
19秒前
可可发布了新的文献求助10
20秒前
慕青应助西柚柠檬采纳,获得10
20秒前
xiaojiu完成签到,获得积分10
20秒前
jiajie_qin应助舒适梨愁采纳,获得20
21秒前
碑刻关注了科研通微信公众号
21秒前
21秒前
碑刻关注了科研通微信公众号
21秒前
马文杰完成签到 ,获得积分10
22秒前
爱喝红茶的钟同学完成签到,获得积分10
22秒前
nenoaowu发布了新的文献求助10
23秒前
xmx发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561407
求助须知:如何正确求助?哪些是违规求助? 3135053
关于积分的说明 9410808
捐赠科研通 2835483
什么是DOI,文献DOI怎么找? 1558462
邀请新用户注册赠送积分活动 728229
科研通“疑难数据库(出版商)”最低求助积分说明 716729