Tissue-Specific Accumulation, Biotransformation, and Physiologically Based Toxicokinetic Modeling of Benzotriazole Ultraviolet Stabilizers in Zebrafish (Danio rerio)

达尼奥 斑马鱼 生物转化 毒物动力学 苯并三唑 化学 毒性 环境化学 生物化学 有机化学 基因
作者
Shuying Zhang,Zhongyu Wang,Jingwen Chen,Qing Xie,Minghua Zhu,Wenjing Han
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (17): 11874-11884 被引量:65
标识
DOI:10.1021/acs.est.1c02861
摘要

Benzotriazole ultraviolet stabilizers (BUVSs) are high-production-volume chemicals with ubiquitous occurrence in the aquatic environment. However, little is known about their bioconcentration and biotransformation, and physiologically based toxicokinetic (PBTK) models for BUVSs are lacking. This study selected six BUVSs for which experiments were performed with zebrafish (Danio rerio) exposed to two different levels (0.5 and 10 μg·L–1). Higher kinetic bioconcentration factors (BCFs) were observed at the lower exposure level with environmental relevance, with BCF of 3.33 × 103 L·kg–1 for 2-(2-hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole (UV-327). This phenomenon was interpreted by a nonlinear adsorption mechanism, where binding with specific protein sites contributes to bioconcentration. Muscle exhibited the lowest accumulation, in which depuration half-life of UV-327 was 19.5 d. In kidney, muscle, ovary, gill, and skin, logBCF increased with increase in log KOW of the BUVSs until log KOW was ca. 6.5, above which logBCF decreased. However, the trend was not observed in the liver and intestine. Six biotransformation products were identified and mainly accumulated in the liver and intestine. Considering the nonlinear adsorption mechanism in the PBTK model, the prediction accuracy of the model was improved, highlighting the binding of xenobiotics with specific protein sites in assessing the bioconcentration of chemicals for their risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
卜卜脆完成签到,获得积分10
2秒前
nanlinhua完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
fui发布了新的文献求助10
4秒前
无花果应助LIHANB采纳,获得10
4秒前
6秒前
科研顺利发布了新的文献求助10
6秒前
鸽子完成签到,获得积分10
7秒前
7秒前
9秒前
传奇3应助玛卡巴卡采纳,获得10
10秒前
11秒前
summuryi完成签到,获得积分20
11秒前
斯文香彤完成签到,获得积分10
12秒前
14秒前
14秒前
苗元槐完成签到 ,获得积分10
14秒前
田様应助Piggy采纳,获得10
15秒前
15秒前
15秒前
16秒前
17秒前
18秒前
nav完成签到 ,获得积分10
19秒前
YXY发布了新的文献求助10
19秒前
领导范儿应助鸡蛋采纳,获得10
20秒前
Jem发布了新的文献求助10
22秒前
22秒前
丶呆久自然萌完成签到,获得积分10
23秒前
26秒前
嘟噜噜完成签到,获得积分10
28秒前
Jem完成签到,获得积分10
28秒前
myth发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
香蕉觅云应助sunsnowaa采纳,获得10
30秒前
烟花应助呃呃呃c采纳,获得10
30秒前
魂断红颜发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758