Value of Traditional Chinese Medicine syndrome differentiation in predicting the survival time of patients with advanced cancer.

医学 内科学 中医药 生存分析 存活率 对数秩检验 胃肠病学 总体生存率 肿瘤科 病理 替代医学
作者
Qin Qi,Hyoyoung Im,Kunshan Li,Muen Gu,Huangan Wu,Ling Yang,Yan Huang,Jimeng Zhao,Yunhua Cui,Huirong Liu,Luyi Wu
出处
期刊:PubMed 卷期号:41 (4): 636-641 被引量:4
标识
DOI:10.19852/j.cnki.jtcm.20210310.001
摘要

To prospectively study the accuracy of the palliative prognostic index (PPI) survival prediction model combined with Traditional Chinese Medicine (TCM) syndrome differentiation.The PPI survival prediction model was used to predict survival time. Patients' real survival time was recorded. The survival time was calculated using the Kaplan-Meier method, and the logrank method was used to test the difference.The average PPI survival prediction score of 227 patients was 5.83 (95% CI: 5.29-6.37). There was a significant difference in the real-life period between the different PPI groups (P < 0.05). PPI group I (predicted survival of > 6 weeks) showed the highest predictive sensitivity and PPI group II (predicted survival of 3-6 weeks) showed the highest predictive specificity. According to TCM syndrome differentiation, 82 cases (36% ) were diagnosed with liver and kidney Yin deficiency (type IV). The actual survival time of type IV patients was significantly shorter than that of other types of patients (mean: 21.85 vs 28.70, P = 0.007). In group I, the median survival time of type IV patients and other types was 25 and 34 d, respectively (P < 0.001). The sensitivity and specificity of PPI prediction were improved in group II by TCM syndrome differentiation. For patients in group III whose predicted survival time was < 3 weeks, the specificity of PPI survival prediction was higher in type IV patients.This study shows that the PPI predictive tool for survival rate has important value. TCM syndrome differentiation and typing has certain significance for further classification and survival prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzy完成签到,获得积分10
刚刚
L.发布了新的文献求助20
1秒前
Verdigris完成签到,获得积分10
2秒前
cindy完成签到,获得积分10
2秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
2秒前
金色热浪完成签到 ,获得积分10
2秒前
快去读文献完成签到,获得积分20
2秒前
斯文静曼完成签到,获得积分10
2秒前
2秒前
2秒前
拼搏思卉关注了科研通微信公众号
3秒前
3秒前
liudiqiu应助酷酷的起眸采纳,获得10
3秒前
研友_8yN60L发布了新的文献求助10
3秒前
所所应助VDC采纳,获得10
3秒前
xxq发布了新的文献求助30
3秒前
xzy发布了新的文献求助20
4秒前
Linanana完成签到,获得积分10
4秒前
4秒前
贾舒涵发布了新的文献求助10
4秒前
Sunrise完成签到,获得积分10
5秒前
HH完成签到,获得积分10
6秒前
科研通AI2S应助飞羽采纳,获得10
6秒前
风中寄云完成签到,获得积分20
6秒前
故意的傲玉应助毛慢慢采纳,获得10
6秒前
6秒前
小白发布了新的文献求助10
6秒前
7秒前
7秒前
马尼拉发布了新的文献求助10
8秒前
CodeCraft应助dildil采纳,获得10
8秒前
8秒前
cyanpomelo完成签到 ,获得积分10
9秒前
9秒前
微笑高山完成签到 ,获得积分10
9秒前
文献查找发布了新的文献求助10
9秒前
加油完成签到,获得积分20
10秒前
Sunrise发布了新的文献求助10
10秒前
tabor发布了新的文献求助10
10秒前
唐妮完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759