医学
缺血
病理生理学
脂多糖
炎症
大脑中动脉
内科学
渗透(HVAC)
内分泌学
麻醉
病理
热力学
物理
作者
Klaus Faßbender,Andreas Ragoschke,Sandra Kühl,Kristina Szabo,Marc Fatar,Walter Back,Thomas Bertsch,Stefan H. Kreisel,Michael G. Hennerici
出处
期刊:Cerebrovascular Diseases
[S. Karger AG]
日期:2002-01-01
卷期号:13 (3): 198-203
被引量:20
摘要
<i>Objective: </i>An inflammatory host response in the ischemically injured brain is well documented. However, its pathophysiological relevance is uncertain. We investigated whether inflammatory leukocyte response in the ischemic brain alters infarct size. <i>Methods:</i> The cellular inflammatory response to cerebral ischemia in Wistar-derived rats induced by the transient occlusion of the middle cerebral artery with a thread was pharmacologically upmodulated by lipopolysaccharide (LPS) or downmodulated by continuous infusion of carboxylated sialyl Lewis<sub>x</sub> (sLex). The effects of such experimental modulation of focal cerebral leukocyte recruitment on the extent of the resulting infarction were assessed. <i>Results:</i><i></i>Compared to control treatments, LPS strongly enhanced (540.5 ± 504.8 vs. 94.6 ± 60.6, p < 0.01) and sLex decreased (32.8 ± 29.1<sup></sup>vs. 97.0 ± 49.7, p < 0.05) the numbers of neutrophils at the investigated sites in cerebral ischemia. Unexpectedly, despite such marked experimental modulation of leukocyte infiltration in the ischemic brain, the extent of the resulting cerebral infarction (percent of total hemisphere) remained unchanged under these different conditions (54.5 ± 10.8<sup></sup>vs. 53.0 ± 19.1, n.s. and 50.3 ± 18.0 vs. 57.2 ± 10.0, n.s., respectively). <i>Conclusions:</i> The striking dissociation between the massively altered inflammatory leukocyte infiltration in the ischemic brain and the unchanged infarct outcome indicates that intracerebral inflammatory leukocyte recruitment is not a major pathogenic factor in the development of ischemic tissue damage.
科研通智能强力驱动
Strongly Powered by AbleSci AI