Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone‐beam CT

计算机视觉 迭代重建 人工智能 锥束ct 运动估计 成像体模 图像质量 投影(关系代数) 计算机科学 混叠 数学 算法 图像(数学) 计算机断层摄影术 光学 物理 医学 放射科 欠采样
作者
Jing Wang,Xuejun Gu
出处
期刊:Medical Physics [Wiley]
卷期号:40 (10) 被引量:95
标识
DOI:10.1118/1.4821099
摘要

Purpose: Image reconstruction and motion model estimation in four‐dimensional cone‐beam CT (4D‐CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D‐CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D‐CBCT. The objective of this work is to enhance both the image quality of 4D‐CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR). Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model‐based iterative image reconstruction to obtain a motion‐compensated primary CBCT (m‐pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m‐pCBCT and other 4D‐CBCT phases. The motion‐compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward‐ and backprojection of SART, measured projections from an entire set of 4D‐CBCT are used for reconstruction of the m‐pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m‐pCBCT and measured projections of other phases of 4D‐CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D‐CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D‐CBCT. Results: Image quality of 4D‐CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D‐CBCT by FDK, motion‐blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D‐CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D‐CBCT, the relative error is 18.9%. Image quality of 4D‐CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK‐reconstructed 4D‐CBCT is 3.0, 2.3, and 7.1 mm along left–right (L‐R), anterior–posterior (A‐P), and superior–inferior (S‐I) directions, respectively. From the DVF obtained by demons registration on 4D‐CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L‐R, A‐P, and S‐I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L‐R, A‐P, and S‐I directions, respectively. Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion‐compensated 4D‐CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D‐CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D‐CBCT reconstruction and motion estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰河完成签到,获得积分10
3秒前
fai完成签到,获得积分10
4秒前
7秒前
三七应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
芯止谭轩应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得30
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
maox1aoxin应助科研通管家采纳,获得80
12秒前
情怀应助科研通管家采纳,获得10
12秒前
maox1aoxin应助科研通管家采纳,获得80
12秒前
12秒前
12秒前
hhh发布了新的文献求助10
13秒前
深水中的阳光完成签到,获得积分10
14秒前
15秒前
传奇3应助Delight采纳,获得80
18秒前
Polymer72应助guozizi采纳,获得10
18秒前
20秒前
24秒前
快乐排骨汤发布了新的文献求助200
25秒前
沫荔完成签到 ,获得积分10
25秒前
不可思议的止血钳完成签到,获得积分10
25秒前
25秒前
maox1aoxin应助虚幻的电灯胆采纳,获得20
26秒前
YL完成签到 ,获得积分10
26秒前
Lucas应助ljssll采纳,获得10
28秒前
西瓜刀发布了新的文献求助20
28秒前
30秒前
32秒前
赘婿应助吴海彤采纳,获得10
34秒前
船船发布了新的文献求助10
36秒前
36秒前
善学以致用应助缥缈念云采纳,获得10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352334
求助须知:如何正确求助?哪些是违规求助? 2977561
关于积分的说明 8680037
捐赠科研通 2658501
什么是DOI,文献DOI怎么找? 1455839
科研通“疑难数据库(出版商)”最低求助积分说明 674121
邀请新用户注册赠送积分活动 664666