Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone‐beam CT

计算机视觉 迭代重建 人工智能 锥束ct 运动估计 成像体模 图像质量 投影(关系代数) 计算机科学 混叠 数学 算法 图像(数学) 计算机断层摄影术 光学 物理 医学 欠采样 放射科
作者
Jing Wang,Xuejun Gu
出处
期刊:Medical Physics [Wiley]
卷期号:40 (10): 101912-101912 被引量:107
标识
DOI:10.1118/1.4821099
摘要

Purpose: Image reconstruction and motion model estimation in four‐dimensional cone‐beam CT (4D‐CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D‐CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D‐CBCT. The objective of this work is to enhance both the image quality of 4D‐CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR). Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model‐based iterative image reconstruction to obtain a motion‐compensated primary CBCT (m‐pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m‐pCBCT and other 4D‐CBCT phases. The motion‐compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward‐ and backprojection of SART, measured projections from an entire set of 4D‐CBCT are used for reconstruction of the m‐pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m‐pCBCT and measured projections of other phases of 4D‐CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D‐CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D‐CBCT. Results: Image quality of 4D‐CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D‐CBCT by FDK, motion‐blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D‐CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D‐CBCT, the relative error is 18.9%. Image quality of 4D‐CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK‐reconstructed 4D‐CBCT is 3.0, 2.3, and 7.1 mm along left–right (L‐R), anterior–posterior (A‐P), and superior–inferior (S‐I) directions, respectively. From the DVF obtained by demons registration on 4D‐CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L‐R, A‐P, and S‐I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L‐R, A‐P, and S‐I directions, respectively. Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion‐compensated 4D‐CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D‐CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D‐CBCT reconstruction and motion estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助Ttimer采纳,获得10
刚刚
忞航完成签到 ,获得积分10
刚刚
黄梓同完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
victory_liu完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
藏锋完成签到 ,获得积分10
13秒前
17秒前
胖胖完成签到 ,获得积分0
23秒前
量子星尘发布了新的文献求助10
24秒前
serendipity完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
jinjing完成签到,获得积分10
26秒前
葡萄柚子应助蓝色花生豆采纳,获得20
27秒前
30秒前
31秒前
量子星尘发布了新的文献求助10
37秒前
绵羊座鸭梨完成签到 ,获得积分10
37秒前
舒服的月饼完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
41秒前
优美的莹芝完成签到,获得积分10
43秒前
44秒前
林中雀完成签到 ,获得积分10
48秒前
思源应助科研辣鸡采纳,获得10
48秒前
未完成完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
49秒前
smottom应助灯座采纳,获得10
49秒前
秋嵩应助灯座采纳,获得10
49秒前
量子星尘发布了新的文献求助10
57秒前
嘻嘻哈哈发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773300
求助须知:如何正确求助?哪些是违规求助? 5609636
关于积分的说明 15430839
捐赠科研通 4905843
什么是DOI,文献DOI怎么找? 2639857
邀请新用户注册赠送积分活动 1587764
关于科研通互助平台的介绍 1542761