数量性状位点
遗传建筑学
生物
特质
单变量
人口
计算生物学
关联映射
多元统计
基因
遗传学
计算机科学
数学
基因型
统计
单核苷酸多态性
人口学
社会学
程序设计语言
作者
Christopher N. Topp,Anjali S. Iyer‐Pascuzzi,Jill T. Anderson,Cheng‐Ruei Lee,Paul R. Zurek,Olga Symonova,Ying Zheng,Alexander Bucksch,Yuriy Mileyko,Taras Galkovskyi,Brad T. Moore,John Harer,Herbert Edelsbrunner,Thomas Mitchell‐Olds,Joshua S. Weitz,Philip N. Benfey
标识
DOI:10.1073/pnas.1304354110
摘要
Significance Improving the efficiency of root systems should result in crop varieties with better yields, requiring fewer chemical inputs, and that can grow in harsher environments. Little is known about the genetic factors that condition root growth because of roots’ complex shapes, the opacity of soil, and environmental influences. We designed a 3D root imaging and analysis platform and used it to identify regions of the rice genome that control several different aspects of root system growth. The results of this study should inform future efforts to enhance root architecture for agricultural benefit.
科研通智能强力驱动
Strongly Powered by AbleSci AI