Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices

普通最小二乘法 地理加权回归模型 加权 地理 地图学 回归 样品(材料) 空间变异性 拟合优度 空间分析 回归分析 统计 计量经济学 计算机科学 数学 放射科 化学 医学 色谱法
作者
Bo Huang,Bo Wu,Michael Barry
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:24 (3): 383-401 被引量:1202
标识
DOI:10.1080/13658810802672469
摘要

Abstract By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data. Keywords: geographically and temporally weighted regressiongeographically weighted regressionspatial nonstationaritytemporal nonstationarityhousing priceCalgary Acknowledgments This research is funded by the Hong Kong Research Grants Council (RGC) under CERG project no. CUHK 444107 and the Natural Sciences and Engineering Research Council (NSERC) of Canada under discovery grant no. 312166-05. Their support is gratefully acknowledged. We also thank the two anonymous reviewers for their insightful comments that have been very helpful in improving this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路盼易给迷路盼易的求助进行了留言
1秒前
刘富宇完成签到 ,获得积分10
1秒前
科研通AI5应助左左采纳,获得30
1秒前
1秒前
shencan发布了新的文献求助10
2秒前
小苏发布了新的文献求助10
2秒前
共享精神应助年轻的宛采纳,获得10
2秒前
2秒前
wy完成签到,获得积分10
2秒前
yy发布了新的文献求助10
2秒前
BEMJ完成签到,获得积分10
2秒前
干净的小懒虫完成签到,获得积分10
3秒前
鱼蛋丸子发布了新的文献求助10
3秒前
3秒前
羞涩的梦山完成签到 ,获得积分10
4秒前
丁莞发布了新的文献求助10
4秒前
666完成签到,获得积分10
4秒前
赵梦杰发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
学子发布了新的文献求助10
6秒前
细雨带风吹完成签到,获得积分10
6秒前
浮浮世世应助fanqiaqia采纳,获得10
6秒前
大模型应助wenyoyo采纳,获得10
7秒前
CodeCraft应助Shiyuzz采纳,获得10
7秒前
Zibal发布了新的文献求助20
7秒前
csy完成签到 ,获得积分20
8秒前
11111111发布了新的文献求助10
8秒前
桐桐应助小苏采纳,获得10
8秒前
KYRIE发布了新的文献求助10
9秒前
12鱼完成签到 ,获得积分10
10秒前
11秒前
11秒前
lilili应助KKKKKKKKKKKK采纳,获得10
11秒前
11秒前
Alon发布了新的文献求助10
11秒前
GoldenMorrow发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004355
求助须知:如何正确求助?哪些是违规求助? 4248536
关于积分的说明 13237242
捐赠科研通 4047837
什么是DOI,文献DOI怎么找? 2214525
邀请新用户注册赠送积分活动 1224520
关于科研通互助平台的介绍 1144998