Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices

普通最小二乘法 地理加权回归模型 加权 地理 地图学 回归 样品(材料) 空间变异性 拟合优度 空间分析 回归分析 统计 计量经济学 计算机科学 数学 医学 化学 色谱法 放射科
作者
Bo Huang,Bo Wu,Michael Barry
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:24 (3): 383-401 被引量:1025
标识
DOI:10.1080/13658810802672469
摘要

Abstract By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data. Keywords: geographically and temporally weighted regressiongeographically weighted regressionspatial nonstationaritytemporal nonstationarityhousing priceCalgary Acknowledgments This research is funded by the Hong Kong Research Grants Council (RGC) under CERG project no. CUHK 444107 and the Natural Sciences and Engineering Research Council (NSERC) of Canada under discovery grant no. 312166-05. Their support is gratefully acknowledged. We also thank the two anonymous reviewers for their insightful comments that have been very helpful in improving this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助feezy采纳,获得10
2秒前
3秒前
华仔应助liuhui采纳,获得10
4秒前
蛋蛋姐姐完成签到,获得积分10
4秒前
miketyson完成签到,获得积分10
5秒前
美丽的鞋垫完成签到 ,获得积分10
6秒前
7秒前
8秒前
9秒前
橙子发布了新的文献求助10
9秒前
盈盈完成签到,获得积分20
11秒前
利多可欣完成签到,获得积分10
11秒前
鲜橙发布了新的文献求助10
14秒前
平常山柏完成签到 ,获得积分10
16秒前
有魅力白桃完成签到,获得积分10
17秒前
下雪的季节完成签到,获得积分10
18秒前
内向的火车完成签到 ,获得积分10
19秒前
20秒前
21秒前
852应助耶耶采纳,获得10
23秒前
可可151i发布了新的文献求助10
24秒前
mictime完成签到,获得积分10
24秒前
24秒前
26秒前
27秒前
282387287完成签到,获得积分10
29秒前
29秒前
桃宝儿完成签到,获得积分10
29秒前
31秒前
zlq发布了新的文献求助10
31秒前
ksr8888应助浮生采纳,获得10
31秒前
脑洞疼应助easy采纳,获得10
34秒前
35秒前
liuhui发布了新的文献求助10
35秒前
周老八发布了新的文献求助10
36秒前
36秒前
37秒前
37秒前
无敌最俊朗应助nature采纳,获得30
39秒前
Akim应助Zzz采纳,获得10
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312100
求助须知:如何正确求助?哪些是违规求助? 2944743
关于积分的说明 8521216
捐赠科研通 2620426
什么是DOI,文献DOI怎么找? 1432831
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650106