Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices

普通最小二乘法 地理加权回归模型 加权 地理 地图学 回归 样品(材料) 空间变异性 拟合优度 空间分析 回归分析 统计 计量经济学 计算机科学 数学 放射科 化学 医学 色谱法
作者
Bo Huang,Bo Wu,Michael Barry
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:24 (3): 383-401 被引量:1202
标识
DOI:10.1080/13658810802672469
摘要

Abstract By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data. Keywords: geographically and temporally weighted regressiongeographically weighted regressionspatial nonstationaritytemporal nonstationarityhousing priceCalgary Acknowledgments This research is funded by the Hong Kong Research Grants Council (RGC) under CERG project no. CUHK 444107 and the Natural Sciences and Engineering Research Council (NSERC) of Canada under discovery grant no. 312166-05. Their support is gratefully acknowledged. We also thank the two anonymous reviewers for their insightful comments that have been very helpful in improving this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YXHTCM发布了新的文献求助10
刚刚
455完成签到,获得积分10
1秒前
1秒前
小鱼完成签到 ,获得积分10
4秒前
慕青应助菠萝披萨采纳,获得10
5秒前
九思发布了新的文献求助10
6秒前
林牧完成签到,获得积分10
8秒前
10秒前
大帅哥发布了新的文献求助10
14秒前
大个应助优美的南烟采纳,获得10
14秒前
spzdss发布了新的文献求助150
14秒前
懵懂的曼寒完成签到,获得积分10
18秒前
18秒前
无花果应助u9227采纳,获得10
18秒前
19秒前
黎明发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
浮游应助刘丹丹采纳,获得10
21秒前
Helio发布了新的文献求助10
24秒前
lzl17o8发布了新的文献求助10
24秒前
28秒前
霸气的半烟完成签到,获得积分20
28秒前
fisker完成签到,获得积分10
30秒前
31秒前
fzx完成签到,获得积分10
31秒前
lll发布了新的文献求助10
32秒前
35秒前
35秒前
黎明完成签到,获得积分10
36秒前
fisker发布了新的文献求助10
36秒前
自觉的枕头完成签到,获得积分10
36秒前
37秒前
38秒前
烟花应助大帅哥采纳,获得10
38秒前
39秒前
HalaMadrid完成签到,获得积分10
39秒前
wxsaty完成签到,获得积分10
40秒前
皆可发布了新的文献求助30
41秒前
6666发布了新的文献求助20
42秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449302
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263669
捐赠科研通 4480533
什么是DOI,文献DOI怎么找? 2454467
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1420986