交易激励
生物
转录因子
DNA结合域
运行x1
分子生物学
发起人
巨核细胞生成
细胞生物学
遗传学
基因
基因表达
造血
干细胞
巨核细胞
作者
Hebin Liu,Leif Carlsson,Thomas Grundström
标识
DOI:10.1074/jbc.m603249200
摘要
RUNX1, or AML1, is a transcription factor that is the most frequent target for chromosomal gene translocations in acute leukemias. RUNX1 is essential for definitive hematopoiesis in embryos and profoundly influences adult steady-state hematopoiesis both positively and negatively. To investigate this wide range of normal activities and the pathological role of RUNX1, it is important to define the functions of different domains of the protein. RUNX1, RUNX2, and RUNX3 are highly conserved in their DNA binding runt homology domain and contain divergent sequences of unknown function N-terminal to this domain. Here we analyzed the role of the N-terminal sequence and the alpha-helix of the runt homology domain of Runx1 in DNA binding, transactivation, and megakaryocytopoiesis. Both the N terminus and the alpha-helix were found to reduce DNA binding of Runx1 and be essential for transactivation of the granulocyte-macrophage colony-stimulating factor and Ialpha1 promoters by Runx1. The N terminus of Runx1, including the alpha-helix, was also required for transactivation of a Gal4 reporter when expressed as fusion proteins with a Gal4 DNA binding domain, and the N terminus alone was capable of stimulating transcription when fused to the Gal4 DNA binding domain. The N terminus and the alpha-helix, however, were not required for megakaryocyte development from embryonic stem cells differentiated in vitro. Thus, our findings define a second transactivation domain of Runx1 that is differentially required for activation of transcription of some Runx1-dependent promoters and megakaryocytopoiesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI