Development of a human COPD model-on-a-chip to mimic disease exacerbation (a small airway-on-a-chip model)

慢性阻塞性肺病 恶化 医学 气道 免疫学 炎症 内科学 麻醉
作者
Kambez H. Benam,Remi Villenave,Carolina Lucchesi,Marc Mazur,Geraldine A. Hamilton,Donald E. Ingber
出处
期刊:European Respiratory Journal 卷期号:44: 3340- 被引量:2
摘要

Acute exacerbations of COPD account for the high morbidity and mortality associated with the disease. Development of pharmacotherapies for COPD has been hindered partly by the lack of appropriate in vitro disease models. Here, for the first time, we describe a biomimetic microfluidic microdevice that reconstructs the 3D mucosal lining of human small airways. Primary human airway epithelial cells from healthy normal and COPD donors were differentiated into ciliated pseudostratified epithelium in these small airway mimics. Validating the model, in line with earlier reports [Wang, R. et al. 2012; MacRedmond, R.E. et al. 2007] gene expression analysis revealed lower Toll-like Receptor (TLR)-4 transcripts in COPD compared with healthy normal. Of interest, when stimulating with TLR ligands to induce exacerbation-like phenotype, despite lower TLR levels, COPD chips mounted a more exaggerated inflammatory response. A novel aspect of the chip technology is microfluidic 9vascular9 channel that allows simulation of endothelial cell-coated post-capillary venules to interrogate recruitment and attachment of circulating leukocytes. We re-created the complex organ-level response during exacerbation and compared efficacy of candidate therapeutics in modulating neutrophil adhesion to inflamed endothelium. The results demonstrated superiority of two anti-inflammatory drugs over a commonly prescribed corticosteroid in lowering neutrophilic inflammation. This new and unique technology provides the first 3D microfluidic system for modeling a human airway disease, may open path for personalized medicine, and can provide relevant feedback on efficacy and toxicity of drugs at preclinical stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿生完成签到,获得积分10
1秒前
Akim应助小益达采纳,获得10
3秒前
Arui完成签到,获得积分20
4秒前
5秒前
Jasper应助xyx采纳,获得10
5秒前
彭于晏应助卡尔采纳,获得10
6秒前
我是老大应助和谐的寄凡采纳,获得10
6秒前
乐乐应助超级白昼采纳,获得10
6秒前
芥子完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
WXL发布了新的文献求助10
8秒前
9秒前
个木发布了新的文献求助10
9秒前
yy应助机智的天天采纳,获得10
9秒前
10秒前
10秒前
yuan发布了新的文献求助10
10秒前
完美世界应助WY采纳,获得10
11秒前
11秒前
12秒前
13秒前
虚幻初之发布了新的文献求助10
13秒前
傻丢发布了新的文献求助10
13秒前
qaw发布了新的文献求助10
14秒前
阿生发布了新的文献求助10
14秒前
JAKEyy完成签到,获得积分10
15秒前
15秒前
3AM发布了新的文献求助10
16秒前
Tian发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
WXL完成签到,获得积分20
19秒前
Ariel完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459588
求助须知:如何正确求助?哪些是违规求助? 3053915
关于积分的说明 9039460
捐赠科研通 2743281
什么是DOI,文献DOI怎么找? 1504749
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694685