Genes encoding acyl-CoA dehydrogenase (AcdH) homologues from Streptomyces coelicolor and Streptomyces avermitilis provide insights into the metabolism of small branched-chain fatty acids and macrolide antibiotic production The GenBank accession numbers for the sequences described in this paper are AF142581 (Streptomyces coelicolor) and AF143210 (Streptomyces avermitilis).
Ying-Xin Zhang,Claudio D. Denoya,D D Skinner,Ronald Fedechko,Hamish A. I. McArthur,M R Morgenstern,Richard Davies,Sandra Lobo,Kevin A. Reynolds,C. Richard Hutchinson
The cloning, using a PCR approach, of genes from both Streptomyces coelicolor and Streptomyces avermitilis encoding an acyl-CoA dehydrogenase (AcdH), putatively involved in the catabolism of branched-chain amino acids, is reported. The deduced amino acid sequences of both genes have a high similarity to prokaryotic and eukaryotic short-chain acyl-CoA dehydrogenases. When the S. coelicolor and S. avermitilis acyl-CoA dehydrogenase genes (acdH) were expressed in Escherichia coli, each of the AcdH flavoproteins was able to oxidize the branched-chain acyl-CoA derivatives isobutyryl-CoA, isovaleryl-CoA and cyclohexylcarbonyl-CoA, as well as the short straight-chain acyl-CoAs n-butyryl-CoA and n-valeryl-CoA in vitro. NMR spectral data confirmed that the oxidized product of isobutyryl-CoA is methacrylyl-CoA, which is the expected product at the acyl-CoA dehydrogenase step in the catabolism of valine in streptomycetes. Disruption of the S. avermitilis acdH produced a mutant unable to grow on solid minimal medium containing valine, isoleucine or leucine as sole carbon sources. Feeding studies with 13C triple-labelled isobutyrate revealed a significant decrease in the incorporation of label into the methylmalonyl-CoA-derived positions of avermectin in the acdH mutant. In contrast the mutation did not affect incorporation into the malonyl-CoA-derived positions of avermectin. These results are consistent with the acdH gene encoding an acyl-CoA dehydrogenase with a broad substrate specificity that has a role in the catabolism of branched-chain amino acids in S. coelicolor and S. avermitilis.