The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon

材料科学 无定形固体 薄脆饼 化学工程 电化学 阳极 图层(电子) 电解质 电池(电) 非晶硅 硫系化合物 石墨 相(物质) 纳米技术 晶体硅 电极 光电子学 复合材料 结晶学 物理化学 有机化学 化学 功率(物理) 工程类 物理 量子力学
作者
Chuntian Cao,Hans‐Georg Steinrück,Badri Shyam,Michael F. Toney
出处
期刊:Advanced Materials Interfaces [Wiley]
卷期号:4 (22) 被引量:51
标识
DOI:10.1002/admi.201700771
摘要

Abstract While silicon (Si) has tenfold capacity of commercially used graphite, its application is still limited due to its limited cyclability. In this in situ X‐ray reflectivity study, a detailed mechanistic model of the first two (de)lithiation processes of a silicon wafer is presented, which sheds light onto the fundamental difference of the reaction of Li ions with crystalline and amorphous materials. Furthermore, this study provides insight into the formation and further evolution of the inorganic solid electrolyte interphase (SEI) layer on Si anodes. The results show that the lithiation of crystalline Si is a layer‐by‐layer, reaction limited two‐phase process, but the delithiation of Li x Si (resulting in amorphous Si) and the lithiation of amorphous Si are reaction‐limited single‐phase processes. Furthermore, the thickness‐density product of the inorganic SEI layer increases during lithiation and decreases during delithiation, resembling a “breathing” behavior; the inorganic SEI layer thickness varies between 40 and 70 Å. Additionally, a low‐electron‐density “Li‐dip” layer is found between the SEI and lithiated Si during the delithiation process, suggesting kinetically limited ion transport within the SEI, which is speculated to be one of the origins of battery's internal resistance. Several implications of the findings on battery performance in general are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿里嘎多发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
文丽完成签到,获得积分10
1秒前
1秒前
zan完成签到,获得积分20
2秒前
汤汤发布了新的文献求助10
2秒前
2秒前
姜博超发布了新的文献求助10
3秒前
我爱读文献完成签到,获得积分10
3秒前
露露发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
123456发布了新的文献求助10
5秒前
keyan应助温柔嚣张采纳,获得10
6秒前
姜黄发布了新的文献求助10
6秒前
7秒前
无花果应助HJJHJH采纳,获得10
7秒前
zan发布了新的文献求助30
8秒前
111发布了新的文献求助10
8秒前
松与杉发布了新的文献求助30
8秒前
无极微光应助无限的绮晴采纳,获得20
9秒前
hangboy发布了新的文献求助10
9秒前
熬夜波比应助文丽采纳,获得10
9秒前
wanci应助陶醉铁身采纳,获得10
9秒前
10秒前
废废废完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
考博圣体发布了新的文献求助10
12秒前
科目三应助幽默的蜡烛采纳,获得10
13秒前
玩命的赛君完成签到,获得积分20
13秒前
13秒前
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277