Estimation of wind speed probability density function using a mixture of two truncated normal distributions

概率密度函数 威布尔分布 形状参数 分布(数学) 功能(生物学) 估计员 耿贝尔分布 伽马分布 瑞利分布
作者
Domenico Mazzeo,Giuseppe Antonio Oliveti,Ester Labonia
出处
期刊:Renewable Energy [Elsevier]
卷期号:115: 1260-1280 被引量:31
标识
DOI:10.1016/j.renene.2017.09.043
摘要

Abstract Probability density functions (PDFs) are normally used to describe wind speed distribution for the proper selection of wind turbines in a given location. The identification of a suitable PDF is fundamental for accurately assessing the wind energy potential and designing the wind farms. To achieve this objective, the use of a mixture of two truncated normal distributions (MTTND), defined for v ≥ 0 and obtained by linearly combining two normal distributions with different means and variances, is proposed in this work for the representation of the wind speed PDF. The distribution is a function of five parameters, does not require a high computational burden and allows the representation of wind calm hours (v = 0). The use of the MTTND allows an accurate estimation to be obtained of the experimental discrete distribution of the probability density and cumulative probability, and the characteristic statistical quantities used to estimate the available energy and the performance indicators in the selection of both the site and wind turbine. The validity of the use of the MTTND was verified by comparison with the most widespread PDFs in the scientific literature: Weibull, Rayleigh, lognormal, gamma, inverse Gaussian and Burr. This comparison was developed using experimental wind speed data relating to five Italian locations and a location in Colorado (USA) belonging to the National Renewable Energy Laboratory. For each location, the parameters of each PDF were obtained with the least squares non-linear regression method. The results of the comparisons, in terms of the coefficient of determination R2 and root mean square error (RMSE) for goodness of fit and in terms of relative error in the calculation of the statistical quantities, show that the use of the MTTND gives rise to greater accuracy than a conventional wind speed PDF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
倒数第二完成签到,获得积分10
1秒前
lapidary发布了新的文献求助10
2秒前
十亿发布了新的文献求助10
2秒前
RayLam完成签到,获得积分10
3秒前
佳沫完成签到,获得积分10
4秒前
chrysan发布了新的文献求助10
4秒前
不敢心动完成签到,获得积分10
4秒前
莲的心事完成签到,获得积分10
4秒前
EVE发布了新的文献求助50
5秒前
5秒前
5秒前
白一丹完成签到,获得积分20
6秒前
简单灵凡发布了新的文献求助10
6秒前
虚幻靖易完成签到,获得积分10
6秒前
酷波er应助赵哥采纳,获得10
6秒前
Anorange发布了新的文献求助100
6秒前
7秒前
桐桐应助qwe采纳,获得30
7秒前
7秒前
kim发布了新的文献求助10
7秒前
8秒前
zhikaiyici应助hehe采纳,获得10
10秒前
Hello应助失眠的夜雪采纳,获得10
10秒前
RayLam发布了新的文献求助10
10秒前
佳里完成签到,获得积分10
11秒前
simple发布了新的文献求助10
11秒前
12秒前
12秒前
大白发布了新的文献求助10
12秒前
科研通AI2S应助Murphy采纳,获得10
12秒前
Singularity应助chris chen采纳,获得10
12秒前
Hello应助Revovler采纳,获得10
13秒前
13秒前
Ale发布了新的文献求助10
13秒前
13秒前
14秒前
正直的千柔完成签到,获得积分10
14秒前
14秒前
Or1ll完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156528
求助须知:如何正确求助?哪些是违规求助? 2807966
关于积分的说明 7875565
捐赠科研通 2466256
什么是DOI,文献DOI怎么找? 1312779
科研通“疑难数据库(出版商)”最低求助积分说明 630273
版权声明 601919