Estimation of wind speed probability density function using a mixture of two truncated normal distributions

概率密度函数 威布尔分布 形状参数 分布(数学) 功能(生物学) 估计员 耿贝尔分布 伽马分布 瑞利分布
作者
Domenico Mazzeo,Giuseppe Antonio Oliveti,Ester Labonia
出处
期刊:Renewable Energy [Elsevier]
卷期号:115: 1260-1280 被引量:31
标识
DOI:10.1016/j.renene.2017.09.043
摘要

Abstract Probability density functions (PDFs) are normally used to describe wind speed distribution for the proper selection of wind turbines in a given location. The identification of a suitable PDF is fundamental for accurately assessing the wind energy potential and designing the wind farms. To achieve this objective, the use of a mixture of two truncated normal distributions (MTTND), defined for v ≥ 0 and obtained by linearly combining two normal distributions with different means and variances, is proposed in this work for the representation of the wind speed PDF. The distribution is a function of five parameters, does not require a high computational burden and allows the representation of wind calm hours (v = 0). The use of the MTTND allows an accurate estimation to be obtained of the experimental discrete distribution of the probability density and cumulative probability, and the characteristic statistical quantities used to estimate the available energy and the performance indicators in the selection of both the site and wind turbine. The validity of the use of the MTTND was verified by comparison with the most widespread PDFs in the scientific literature: Weibull, Rayleigh, lognormal, gamma, inverse Gaussian and Burr. This comparison was developed using experimental wind speed data relating to five Italian locations and a location in Colorado (USA) belonging to the National Renewable Energy Laboratory. For each location, the parameters of each PDF were obtained with the least squares non-linear regression method. The results of the comparisons, in terms of the coefficient of determination R2 and root mean square error (RMSE) for goodness of fit and in terms of relative error in the calculation of the statistical quantities, show that the use of the MTTND gives rise to greater accuracy than a conventional wind speed PDF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Ethan发布了新的文献求助10
1秒前
君知行完成签到,获得积分10
2秒前
2秒前
元谷雪发布了新的文献求助10
2秒前
欢呼的怀蝶完成签到,获得积分10
2秒前
地球发布了新的文献求助10
3秒前
3秒前
七科栗子发布了新的文献求助10
4秒前
4秒前
无花果应助xia采纳,获得10
5秒前
惊火完成签到,获得积分20
5秒前
wangwenzhe发布了新的文献求助10
6秒前
WCR完成签到 ,获得积分10
6秒前
6秒前
甜甜完成签到,获得积分10
6秒前
孟一帆完成签到,获得积分10
6秒前
8秒前
小七啊发布了新的文献求助10
8秒前
lkk发布了新的文献求助10
8秒前
Owen应助平凡的世界采纳,获得10
8秒前
8秒前
今后应助瘦瘦的问安采纳,获得10
9秒前
田様应助开心易真采纳,获得10
9秒前
Bonnienuit完成签到 ,获得积分10
11秒前
秀秀完成签到,获得积分10
12秒前
He完成签到,获得积分10
12秒前
小柠檬发布了新的文献求助10
12秒前
12秒前
zz完成签到,获得积分10
12秒前
可爱的函函应助wangwenzhe采纳,获得10
12秒前
微笑枫叶完成签到,获得积分10
13秒前
SciGPT应助ls采纳,获得10
14秒前
搜集达人应助He采纳,获得10
15秒前
15秒前
gqb发布了新的文献求助10
15秒前
典雅的俊驰应助体贴的嵩采纳,获得30
15秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131